Bayesian joint modeling of binomial and rank response with non-ignorable missing data for primate cognition

被引:0
|
作者
Aghayerashti, Maryam [1 ]
Samani, Ehsan Bahrami [1 ]
Ganjali, Mojtaba [1 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, Dept Stat, Tehran, Iran
关键词
Hierarchical Bayes; latent performance; mixed responses; non-ignorable missing values; rank response; BRADLEY-TERRY MODEL; REGRESSION-MODELS; DISCRETE; DISTRIBUTIONS; LIKELIHOOD; BINARY; ORDER; TIES;
D O I
10.1080/03610926.2022.2163367
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A random effects model for analyzing mixed rank and binomial data with considering the missing values is presented. Occurring of missing data is an important problem in all research fields. The most common approach to dealing with missing data is to delete cases containing missing observations. However, this approach reduces statistical power and mislead us to biased statistical results. This paper aims to prepare guidance for researchers facing missing data problems and to provide techniques for jointly modeling of binomial and rank responses. We compare the cognitive abilities of different primates based on their performance on 17 cognitive assessments obtained on either a rank or binomial scale using Bayesian latent variable with random effects models. Random effects are used to take into account the correlation between responses of the same individual.
引用
收藏
页码:3758 / 3778
页数:21
相关论文
共 50 条
  • [1] Joint Bayesian Modeling of Binomial and Rank Data for Primate Cognition
    Barney, Bradley J.
    Amici, Federica
    Aureli, Filippo
    Call, Josep
    Johnson, Valen E.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (510) : 573 - 582
  • [2] Bayesian analysis of latent Markov models with non-ignorable missing data
    Cai, Jingheng
    Liang, Zhibin
    Sun, Rongqian
    Liang, Chenyi
    Pan, Junhao
    [J]. JOURNAL OF APPLIED STATISTICS, 2019, 46 (13) : 2299 - 2313
  • [3] Improving the performance of Bayesian networks in non-ignorable missing data imputation
    Niloofar, P.
    Ganjali, M.
    Rohani, M. R. Farid
    [J]. KUWAIT JOURNAL OF SCIENCE, 2013, 40 (02) : 83 - 101
  • [4] Bayesian Sensitivity Analysis for Non-ignorable Missing Data in Longitudinal Studies
    Li, Tian
    Somers, Julian M.
    Hu, Xiaoqiong J.
    McCandless, Lawrence C.
    [J]. STATISTICS IN BIOSCIENCES, 2019, 11 (01) : 184 - 205
  • [5] Bayesian Sensitivity Analysis for Non-ignorable Missing Data in Longitudinal Studies
    Tian Li
    Julian M. Somers
    Xiaoqiong J. Hu
    Lawrence C. McCandless
    [J]. Statistics in Biosciences, 2019, 11 : 184 - 205
  • [6] Binomial Proportion Estimation in Longitudinal Data with Non-ignorable Non-response
    Wang, Xue-li
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 623 - 630
  • [7] Binomial proportion estimation in longitudinal data with non-ignorable non-response
    Xue-li Wang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 623 - 630
  • [8] Binomial Proportion Estimation in Longitudinal Data with Non-ignorable Non-response
    Xue-li WANG
    [J]. Acta Mathematicae Applicatae Sinica(English Series), 2013, 29 (03) - 630
  • [10] Bayesian analysis of mixtures in structural equation models with non-ignorable missing data
    Cai, Jing-Heng
    Song, Xin-Yuan
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2010, 63 (03): : 491 - 508