Qade: solving differential equations on quantum annealers

被引:6
|
作者
Criado, Juan Carlos [1 ,2 ]
Spannowsky, Michael [1 ,2 ]
机构
[1] Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England
[2] Univ Durham, Dept Phys, Durham DH1 3LE, England
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2023年 / 8卷 / 01期
关键词
quantum annealing; differential equations; quantum adiabatic computation; ALGORITHM;
D O I
10.1088/2058-9565/acaa51
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
title Abstract We present a general method, called Qade, for solving differential equations using a quantum annealer. One of the main advantages of this method is its flexibility and reliability. On current devices, Qade can solve systems of coupled partial differential equations that depend linearly on the solution and its derivatives, with non-linear variable coefficients and arbitrary inhomogeneous terms. We test this through several examples that we implement in state-of-the-art quantum annealers. The examples include a partial differential equation and a system of coupled equations. This is the first time that equations of these types have been solved in such devices. We find that the solution can be obtained accurately for problems requiring a small enough function basis. We provide a Python package implementing the method at gitlab.com/jccriado/qade.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Quantum Algorithms for Solving Ordinary Differential Equations via Classical Integration Methods
    Zanger, Benjamin
    Mendl, Christian B.
    Schulz, Martin
    Schreiber, Martin
    QUANTUM, 2021, 5
  • [32] Molecular dynamics on quantum annealers
    Gaidai, Igor
    Babikov, Dmitri
    Teplukhin, Alexander
    Kendrick, Brian K.
    Mniszewski, Susan M.
    Zhang, Yu
    Tretiak, Sergei
    Dub, Pavel A.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [33] Parameter Setting for Quantum Annealers
    Pudenz, Kristen L.
    2016 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2016,
  • [34] Molecular dynamics on quantum annealers
    Igor Gaidai
    Dmitri Babikov
    Alexander Teplukhin
    Brian K. Kendrick
    Susan M. Mniszewski
    Yu Zhang
    Sergei Tretiak
    Pavel A. Dub
    Scientific Reports, 12
  • [35] Fuzzy Logic on Quantum Annealers
    Pourabdollah, Amir
    Acampora, Giovanni
    Schiattarella, Roberto
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (08) : 3389 - 3394
  • [36] Searching for quantum speedup in quasistatic quantum annealers
    Amin, Mohammad H.
    PHYSICAL REVIEW A, 2015, 92 (05):
  • [37] Parallel in time dynamics with quantum annealers
    Konrad Jałowiecki
    Andrzej Więckowski
    Piotr Gawron
    Bartłomiej Gardas
    Scientific Reports, 10
  • [38] Test Case Minimization with Quantum Annealers
    Wang, Xinyi
    Muqeet, Asmar
    Yue, Tao
    Ali, Shaukat
    Arcaini, Paolo
    ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2024, 34 (01)
  • [39] Solving differential-algebraic equations in power system dynamic analysis with quantum computing
    Tran, Huynh T. T.
    Nguyen, Hieu T.
    Vu, Long T.
    Ojetola, Samuel T.
    Energy Conversion and Economics, 2024, 5 (01): : 40 - 53
  • [40] Deep-learning-based quantum algorithms for solving nonlinear partial differential equations
    Mouton, Lukas
    Reiter, Florentin
    Chen, Ying
    Rebentrost, Patrick
    PHYSICAL REVIEW A, 2024, 110 (02)