On a class of Kirchhoff type logarithmic Schrödinger equations involving the critical or supercritical Sobolev exponent

被引:0
|
作者
Fan, Haining [1 ]
Wang, Yongbin [1 ]
Zhao, Lin [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
POSITIVE SOLUTIONS; SCHRODINGER-EQUATIONS; MULTIPLE SOLUTIONS; EXISTENCE; BEHAVIOR;
D O I
10.1063/5.0173078
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study a class of Kirchhoff type logarithmic Schrodinger equations involving the critical or supercritical Sobolev exponent. Such problems cannot be studied by applying variational methods in a standard way, because the nonlinearities do not satisfy the Ambrosetti-Rabinowitz condition and change sign. Moreover, the appearance of the logarithmic term makes the associated energy functional lose differentiable in the sense of Gateaux. By analyzing the structure of the Nehari manifold and developing some analysis techniques, the above obstacles are overcome in subtle ways and several existence result are obtained. Furthermore, we investigate the regularity, the monotonicity, and the symmetric properties of the solutions via the iterative technique and the moving plane method.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] On Kirchhoff type equations with critical Sobolev exponent
    Huang, Yisheng
    Liu, Zeng
    Wu, Yuanze
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 483 - 504
  • [2] Normalized Solutions of Non-autonomous Schrödinger Equations Involving Sobolev Critical Exponent
    Yang, Chen
    Yu, Shu-Bin
    Tang, Chun-Lei
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (09)
  • [3] Existence theorems for the Schrödinger equation involving a critical Sobolev exponent
    J. Chabrowski
    J. Yang
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 276 - 293
  • [4] Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent
    Daisuke Naimen
    Nonlinear Differential Equations and Applications NoDEA, 2014, 21 : 885 - 914
  • [5] Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent
    Naimen, Daisuke
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 21 (06): : 885 - 914
  • [6] Sign-changing solutions to Schrödinger-Kirchhoff-type equations with critical exponent
    Liping Xu
    Haibo Chen
    Advances in Difference Equations, 2016
  • [7] Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent
    Li, Gongbao
    Luo, Xiao
    Yang, Tao
    ANNALES FENNICI MATHEMATICI, 2022, 47 (02): : 895 - 925
  • [8] Ground states for Schrödinger–Kirchhoff equations of fractional p-Laplacian involving logarithmic and critical nonlinearity
    Lv, Huilin
    Zheng, Shenzhou
    Communications in Nonlinear Science and Numerical Simulation, 2022, 111
  • [9] Fractional Kirchhoff–Choquard equation involving Schrödinger term and upper critical exponent
    Yanbin Sang
    Sihua Liang
    The Journal of Geometric Analysis, 2022, 32
  • [10] On the Kirchhoff problems involving critical Sobolev exponent
    Xie, Weihong
    Chen, Haibo
    APPLIED MATHEMATICS LETTERS, 2020, 105 (105)