In this paper we investigate the following Kirchhoff type elliptic boundary value problem involving a critical nonlinearity:
-(a+b∫Ω|∇u|2dx)Δu=μg(x,u)+u5,u>0inΩ,u=0on∂Ω,(K1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{\begin{array}{ll}-(a+b\int_{\Omega}|\nabla u|^2dx)\Delta u=\mu g(x,u)+u^5, u>0& \text{in }\Omega,\\ u=0& \text{on }\partial \Omega,\end{array}\right. {\rm {(K1)}}$$\end{document}here Ω⊂R3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Omega \subset \mathbb{R}^3}$$\end{document} is a bounded domain with smooth boundary ∂Ω,a,b≥0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\partial \Omega, a,b \geq 0}$$\end{document} and a + b > 0. Under several conditions on g∈C(Ω¯×R,R)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${g \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})}$$\end{document} and μ∈R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mu \in \mathbb{R}}$$\end{document}, we prove the existence and nonexistence of solutions of (K1). This is some extension of a part of Brezis–Nirenberg’s result in 1983.