Efficient Sparse Networks from Watts-Strogatz Network Priors
被引:0
|
作者:
Traub, Tamas
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Inst Ind Acad Innovat, Fac Informat, Dept Artificial Intelligence, Budapest, HungaryEotvos Lorand Univ, Inst Ind Acad Innovat, Fac Informat, Dept Artificial Intelligence, Budapest, Hungary
Traub, Tamas
[1
]
Nashouqu, Mohamad
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Inst Ind Acad Innovat, Fac Informat, Dept Artificial Intelligence, Budapest, HungaryEotvos Lorand Univ, Inst Ind Acad Innovat, Fac Informat, Dept Artificial Intelligence, Budapest, Hungary
Nashouqu, Mohamad
[1
]
Gulyas, Laszlo
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Inst Ind Acad Innovat, Fac Informat, Dept Artificial Intelligence, Budapest, HungaryEotvos Lorand Univ, Inst Ind Acad Innovat, Fac Informat, Dept Artificial Intelligence, Budapest, Hungary
Gulyas, Laszlo
[1
]
机构:
[1] Eotvos Lorand Univ, Inst Ind Acad Innovat, Fac Informat, Dept Artificial Intelligence, Budapest, Hungary
Sparse Neural Networks;
Network Science;
Deep Learning;
Graph Theory;
D O I:
10.1007/978-3-031-41456-5_13
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper studies the accuracy and the structural properties of sparse neural networks (SNNs) generated by weight pruning and by using Watts-Strogatz network priors. The study involves Multi-Layer Perceptron (MLP) and Long-Short Term Memory (LSTM) architectures, trained on the MNIST dataset. The paper replicates and extends previous work, showing that networks generated by appropriately selected WS priors guarantee high-quality results, and that these networks outperform pruned networks in terms of accuracy. In addition, observations are made with regard to the structural change induced by network pruning and its implications for accuracy. The findings of this study provide important insights for creating lighter models with lower computational needs, which can achieve results comparable to more complex models.
机构:
Complex System and Computational Intelligence Laboratory, Taiyuan University of Science and Technology, Shanxi 030024, ChinaComplex System and Computational Intelligence Laboratory, Taiyuan University of Science and Technology, Shanxi 030024, China
机构:
Univ Sao Paulo, Escola Artes Ciencias & Humanidades, Ave Arlindo Bettio 1000, BR-03828000 Sao Paulo, BrazilUniv Sao Paulo, Escola Artes Ciencias & Humanidades, Ave Arlindo Bettio 1000, BR-03828000 Sao Paulo, Brazil
Ampuero, F.
Hase, M. O.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Escola Artes Ciencias & Humanidades, Ave Arlindo Bettio 1000, BR-03828000 Sao Paulo, BrazilUniv Sao Paulo, Escola Artes Ciencias & Humanidades, Ave Arlindo Bettio 1000, BR-03828000 Sao Paulo, Brazil
机构:
Scientific Computing Group, Sao Carlos Institute of Physics, University of Sao Paulo (USP), Avenida Trabalhador sao-carlense, 400, SP, Sao CarlosScientific Computing Group, Sao Carlos Institute of Physics, University of Sao Paulo (USP), Avenida Trabalhador sao-carlense, 400, SP, Sao Carlos
Merenda J.V.B.S.
Bruno O.M.
论文数: 0引用数: 0
h-index: 0
机构:
Scientific Computing Group, Sao Carlos Institute of Physics, University of Sao Paulo (USP), Avenida Trabalhador sao-carlense, 400, SP, Sao CarlosScientific Computing Group, Sao Carlos Institute of Physics, University of Sao Paulo (USP), Avenida Trabalhador sao-carlense, 400, SP, Sao Carlos
机构:
Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China
Zhang, Lei
Zuo, Wangmeng
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Heilongjiang, Peoples R ChinaHong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China