Intra-Cavity Laser Manipulation of High-Dimensional Non-Separable States

被引:7
|
作者
Hai, Lan [1 ,2 ,3 ]
Zhang, Zhichao [1 ,2 ,3 ]
Liu, Shilong [4 ]
Li, Lang [1 ,2 ,3 ]
Zhou, Zhiyuan [5 ,6 ]
Wang, Qing [1 ,2 ,3 ]
Gao, Yanze [1 ]
Gao, Chunqing [1 ,2 ,3 ]
Shen, Yijie [7 ,8 ]
Fu, Shiyao [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Opt & Photon, Beijing 100081, Peoples R China
[2] Minist Ind & Informat Technol Peoples Republ China, Key Lab Informat Photon Technol, Beijing 100081, Peoples R China
[3] Minist Educ Peoples Republ China, Key Lab Photoelect Imaging Technol & Syst, Beijing 100081, Peoples R China
[4] Polytech Montreal, Engn Phys Dept, FemtoQ Lab, Montreal, PQ H3T 1JK, Canada
[5] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[6] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Hefei 230026, Anhui, Peoples R China
[7] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[8] Nanyang Technol Univ, Photon Inst, Ctr Disrupt Photon Technol, Singapore 639798, Singapore
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
convolutional neural network; Greenberger-Home-Zeilinger state; non-separable states; orbital angular momentum; state tomography; ORBITAL ANGULAR-MOMENTUM; TOPOLOGICAL CHARGE; CLASSICAL ANALOGY; VORTEX; LIGHT; BEAMS; OAM;
D O I
10.1002/lpor.202300593
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Non-separable states of structured light have the analogous mathematical forms with quantum entanglement, which offer an effective way to simulate quantum process. However, the classical multi-partite non-separable states analogue to multi-particle entanglements can only be controlled by bulky free-space modulation of light through coupling multiple degrees of freedom (DoFs) with orbital angular momentum (OAM) to achieve high dimensionality and other DoFs to emulate multi-parties. In this paper, a scheme is proposed to directly emit multi-partite non-separable states from a simple laser cavity to mimic multi-particle quantum entanglement. Through manipulating three DoFs as OAM, polarization, and wavevector inside a laser cavity, the eight-dimensional (8D) tripartite states and all Greenberger-Horne-Zeilinger (GHZ)-like states can be generated and controlled on demand. In addition, an effective method is proposed to perform state tomography employing convolutional neural network (CNN), for measuring the generated GHZ-like states with highest fidelity up to 95.11%. This work reveals a feasibility of intra-cavity manipulation of high-dimensional multipartite non-separable states, opening a compact device for quantum-classical analogy and paving the path for advanced quantum scenarios. By introducing the spin-orbital coupling into a folded geometric cavity, a group of classical non-separable states with three degrees of freedom are generated and controlled directly from a laser. The high-dimensional non-separable laser states can fully emulate the three-particle entangled Greenberger-Horne-Zeilinger (GHZ) states, which are experimentally verified by a proposed quantum-like state tomography method to reconstruct density matrices and calculate fidelities, providing a compact "at-the-source" solution of high-dimensional quantum-classical simulations and informatics.image
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Stabilization of a semiconductor disk laser using an intra-cavity high reflectivity grating
    Giet, S.
    Lee, C. -L.
    Calvez, S.
    Dawson, M. D.
    Destouches, N.
    Pommier, J. -C.
    Parriaux, O.
    OPTICS EXPRESS, 2007, 15 (25): : 16520 - 16526
  • [22] Passive intra-cavity phase locking of laser channels
    Shimshi, L
    Ishaaya, AA
    Ekhouse, V
    Davidson, N
    Friesem, AA
    OPTICS COMMUNICATIONS, 2006, 263 (01) : 60 - 64
  • [23] PARASITIC SELECTION IN INTRA-CAVITY LASER DETECTION SPECTROSCOPY
    ANTONOV, EN
    ANTSYFEROV, PS
    KACHANOV, AA
    KOLOSHNIKOV, VG
    OPTICS COMMUNICATIONS, 1982, 41 (02) : 131 - 134
  • [24] Design of an external cavity semiconductor laser for intra-cavity beam combining
    Piccione, Sara
    Pavesi, Lorenzo
    LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XXII, 2020, 11266
  • [25] LASER INTRA-CAVITY ABSORPTION FOR QUANTITATIVE-ANALYSIS
    HARRIS, TD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1982, 183 (MAR): : 82 - ANYL
  • [26] Intra-cavity polarizing element for Nd:YAG laser
    Ahmed, MA
    Moser, T
    Pigeon, F
    Parriaux, O
    Graf, T
    LASER PHYSICS LETTERS, 2006, 3 (03) : 129 - 131
  • [27] FELICE - the free electron laser for intra-cavity experiments
    Militsyn, BL
    von Helden, G
    Meijer, GJM
    van der Meer, AFG
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 507 (1-2): : 494 - 497
  • [28] FREQUENCY VARIATION OF INTRA-CAVITY LASER-RADIATION
    HOLLINS, RC
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1982, 15 (06) : 987 - 989
  • [29] A GAS-LASER WITH INTRA-CAVITY PHASE ANISOTROPY
    KOZIN, GI
    KONOVALOV, IP
    PETROVSKII, VN
    PROTSENKO, ED
    RURUKIN, AN
    KVANTOVAYA ELEKTRONIKA, 1980, 7 (11): : 2405 - 2415
  • [30] LASER INTRA-CAVITY TECHNIQUE FOR DETECTION OF TRACES OF INSECTICIDES
    KONJEVIC, N
    ORLOV, M
    TRTICA, M
    SPECTROSCOPY LETTERS, 1977, 10 (05) : 311 - 317