On the Terwilliger algebra of the group association scheme of Cn (sic) C2

被引:4
|
作者
Maleki, Roghayeh [1 ,2 ]
机构
[1] Univ Primorska, UP IAM, Muzejski trg 2, Koper 6000, Slovenia
[2] Univ Primorska, UP FAMNIT, Glagoljaska 8, Koper 6000, Slovenia
关键词
Group association scheme; Wedderburn decomposition; Terwilliger algebra;
D O I
10.1016/j.disc.2023.113773
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1992, Terwilliger introduced the notion of the Terwilliger algebra in order to study association schemes. The Terwilliger algebra of an association scheme A is the subalgebra of the complex matrix algebra, generated by the Bose-Mesner algebra of A and its dual idempotents with respect to a point x. In Bannai and Munemasa (1995) [3] determined the dimension of the Terwilliger algebra of abelian groups and dihedral groups, by showing that they are triply transitive (i.e., triply regular and dually triply regular). In this paper, we give a generalization of their results to the group association scheme of semidirect products of the form C-n (sic) C-2, where Cm is a cyclic group of order m >= 2. Moreover, we will give the complete characterization of the Wedderburn components of the Terwilliger algebra of these groups.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条