Asymptotical behavior of non-autonomous stochastic reaction-diffusion equations with variable delay on RN

被引:0
|
作者
Zhao, Wenqiang [1 ,2 ]
Li, Zhi [1 ,2 ]
机构
[1] Chongqing Key Lab Social Econ & Appl Stat, Chongqing 400067, Peoples R China
[2] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
关键词
Stochastic reaction-diffusion equation; Variable delay; Pullback random attractor; Truncation estimates; Spectral decomposition; Uniform tail estimates; Arzela-Ascoli theorem; RANDOM ATTRACTORS; PULLBACK ATTRACTORS; PARABOLIC EQUATIONS; EXISTENCE; UNIQUENESS;
D O I
10.1007/s43037-023-00301-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the asymptotical behavior of solutions of stochastic reaction- diffusion equations with a super non-linearity and a Lipschizt continuous variable delayed term. The existence and uniqueness of tempered measurable pullback attractors are established in C([-h, 0]; H-1(R-N)). On account of the unobtainable bound of solution in H-2(R-N) caused by the non-differentiability of Brownian motion, the compact embedding on bounded domains is unavailable. To surmount this obstacle, the time point-wise pullback asymptotical compactness of the solutions in H-1(R-N) is proved by employing jointly uniform L-2 (P-2)-truncation estimates, spectral decomposition technique, and uniform tail estimates. In addition, the uniform equi-continuity of solutions in C([-h, 0]; H-1(R-N)) is checked mainly by transforming the infinite dimension problem into a finite dimension problem plus an infinite small principle part.
引用
收藏
页数:50
相关论文
共 50 条