Nanozinc and plant growth-promoting bacteria improve biochemical and metabolic attributes of maize in tropical Cerrado

被引:17
|
作者
Jalal, Arshad [1 ]
Oliveira, Carlos Eduardo da Silva [1 ]
Bastos, Andrea de Castro [1 ]
Fernandes, Guilherme Carlos [1 ]
de Lima, Bruno Horschut [1 ]
Furlani Junior, Enes [2 ]
de Carvalho, Pedro Henrique Gomes [1 ]
Galindo, Fernando Shintate [3 ]
Gato, Isabela Martins Bueno [1 ]
Teixeira Filho, Marcelo Carvalho Minhoto [1 ]
机构
[1] Sao Paulo State Univ UNESP, Dept Plant Protect Rural Engn & Soils DEFERS, Ilha Solteira, Brazil
[2] Sao Paulo State Univ UNESP, Dept Plant Sci Food Technol & Socio Econ, Ilha Solteira, Brazil
[3] Univ Sao Paulo, Ctr Nucl Energy Agr CENA, Piracicaba, Brazil
来源
关键词
PGPB (plant growth-promoting bacteria); photosynthesis; plant growth; nutrient uptake; storage proteins; amino acids; zinc fertilization; grain yield; AZOSPIRILLUM-BRASILENSE; ZINC UPTAKE; BIOFORTIFICATION; INOCULATION; MECHANISM; STRAINS; QUALITY; OXIDE; L;
D O I
10.3389/fpls.2022.1046642
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
IntroductionPlant growth-promoting bacteria (PGPBs) could be developed as a sustainable strategy to promote plant growth and yield to feed the ever-growing global population with nutritious food. Foliar application of nano-zinc oxide (ZnO) is an environmentally safe strategy that alleviates zinc (Zn) malnutrition by improving biochemical attributes and storage proteins of grain. MethodsIn this context, the current study aimed to investigate the combined effect of seed inoculation with PGPBs and foliar nano-ZnO application on the growth, biochemical attributes, nutrient metabolism, and yield of maize in the tropical savannah of Brazil. The treatments consisted of four PGPB inoculations [i.e., without inoculation, Azospirillum brasilense (A. brasilense), Bacillus subtilis (B. subtilis), Pseudomonas fluorescens (P. fluorescens), which was applied on the seeds] and two doses of Zn (i.e., 0 and 3 kg ha(-1), applied from nano-ZnO in two splits on the leaf). ResultsInoculation of B. subtilis with foliar ZnO application increased shoot dry matter (7.3 and 9.8%) and grain yield (17.1 and 16.7%) in 2019-20 and 2020-2021 crop seasons respectively. Inoculation with A. brasilense increased 100-grains weight by 9.5% in both crop seasons. Shoot Zn accumulation was improved by 30 and 51% with inoculation of P. fluorescens in 2019-20 and 2020-2021 crop seasons. Whereas grain Zn accumulation was improved by 49 and 50.7% with inoculation of B. subtilis and P. fluorescens respectively. In addition, biochemical attributes (chlorophyll a, b and total, carotenoids, total soluble sugar and amino acids) were improved with inoculation of B. subtilis along with foliar nano ZnO application as compared to other treatments. Co-application of P. fluorescens with foliar ZnO improved concentration of grains albumin (20 and 13%) and globulin (39 and 30%). Also, co-application of B. subtilis and foliar ZnO improved concentration of grains glutelin (8.8 and 8.7%) and prolamin (15 and 21%) in first and second seasons. DiscussionTherefore, inoculation of B. subtilis and P. fluorescens with foliar nano-ZnO application is considered a sustainable and environmentally safe strategy for improving the biochemical, metabolic, nutritional, and productivity attributes of maize in tropical Savannah regions.
引用
下载
收藏
页数:21
相关论文
共 50 条
  • [31] Inoculation with Plant Growth-Promoting Bacteria Improves the Sustainability of Tropical Pastures with Megathyrsus maximus
    Guimaraes, Gabriel Silva
    Rondina, Artur Berbel Lirio
    de Oliveira Junior, Admilton Goncalves
    Jank, Liana
    Nogueira, Marco Antonio
    Hungria, Mariangela
    AGRONOMY-BASEL, 2023, 13 (03):
  • [32] Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops
    Agbodjato, Nadege Adouke
    Babalola, Olubukola Oluranti
    PEERJ, 2024, 12
  • [33] Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth
    Grobelak, A.
    Napora, A.
    Kacprzak, M.
    ECOLOGICAL ENGINEERING, 2015, 84 : 22 - 28
  • [34] Stress mitigation strategies of plant growth-promoting rhizo-bacteria: Plant growth-promoting rhizobacteria mechanisms
    Sharma, Vriti
    Singh, Aakriti
    Sharma, Diksha
    Sharma, Aashima
    Phogat, Sarika
    Chakraborty, Navjyoti
    Chatterjee, Sayan
    Purty, Ram Singh
    PLANT SCIENCE TODAY, 2021, 8 : 25 - 32
  • [35] Ecology of a plant growth-promoting strain of Pseudomonas fluorescens colonizing the maize endorhizosphere in tropical soil
    Botelho, GR
    Guimaraes, V
    De Bonis, M
    Fonseca, MEF
    Hagler, AN
    Hagler, LCM
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 1998, 14 (04): : 499 - 504
  • [36] Ecology of a plant growth-promoting strain of Pseudomonas fluorescens colonizing the maize endorhizosphere in tropical soil
    G.R. Botelho
    V. Guimarães
    M. De Bonis
    M.E.F. Fonseca
    A.N. Hagler
    L.C.M. Hagler
    World Journal of Microbiology and Biotechnology, 1998, 14 : 499 - 504
  • [37] Impact of Growth-Promoting Endophytic Bacteria on Ginger Plant Growth
    Jabborova, Dilfuza
    Davranov, Kakhramon
    Jabbarov, Zafarjon
    Enakiev, Yuriy
    Abdrakhmanov, Tokhtasin
    Datta, Rahul
    Singh, Sachidanand
    Jahan, Mohammad Shah
    Ercisli, Sezai
    Singh, Namita
    INDIAN JOURNAL OF MICROBIOLOGY, 2024,
  • [38] Application of Plant Growth-Promoting Bacteria from Cape Verde to Increase Maize Tolerance to Salinity
    Cruz, Catarina
    Cardoso, Paulo
    Santos, Jacinta
    Matos, Diana
    Sa, Carina
    Figueira, Etelvina
    ANTIOXIDANTS, 2023, 12 (02)
  • [39] A plant's perception of growth-promoting bacteria and their metabolites
    Abou Jaoude, Renee
    Luziatelli, Francesca
    Ficca, Anna Grazia
    Ruzzi, Maurizio
    FRONTIERS IN PLANT SCIENCE, 2024, 14
  • [40] Plant growth-promoting bacteria as inoculants in agricultural soils
    de Souza, Rocheli
    Ambrosini, Adriana
    Passaglia, Luciane M. P.
    GENETICS AND MOLECULAR BIOLOGY, 2015, 38 (04) : 401 - 419