Fractional anisotropic Calderón problem on complete Riemannian manifolds

被引:1
|
作者
Choulli, Mourad [1 ]
Ouhabaz, El Maati [2 ]
机构
[1] Univ Lorraine, F-54052 Nancy, France
[2] Univ Bordeaux, Inst Math Bordeaux, F-33405 Talence, France
关键词
Fractional Laplace-Beltrami operator; fractional anisotropic Calderon problem; local source-to-solution operator; CALDERON PROBLEM; EQUATIONS; STABILITY; BOUNDS;
D O I
10.1142/S0219199723500578
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the metric tensor g of a complete Riemannian manifold is uniquely determined, up to isometry, from the knowledge of a local source-to-solution operator associated with a fractional power of the Laplace-Beltrami operator Delta g. Our result holds under the condition that the metric tensor g is known in an arbitrary small subdomain. We also consider the case of closed manifolds and provide an improvement of the main result in [A. Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderon problem on closed Riemannian manifolds, preprint (2021); arXiv:2112.03480].
引用
收藏
页数:17
相关论文
共 50 条