Fractional anisotropic Calderón problem on complete Riemannian manifolds

被引:1
|
作者
Choulli, Mourad [1 ]
Ouhabaz, El Maati [2 ]
机构
[1] Univ Lorraine, F-54052 Nancy, France
[2] Univ Bordeaux, Inst Math Bordeaux, F-33405 Talence, France
关键词
Fractional Laplace-Beltrami operator; fractional anisotropic Calderon problem; local source-to-solution operator; CALDERON PROBLEM; EQUATIONS; STABILITY; BOUNDS;
D O I
10.1142/S0219199723500578
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the metric tensor g of a complete Riemannian manifold is uniquely determined, up to isometry, from the knowledge of a local source-to-solution operator associated with a fractional power of the Laplace-Beltrami operator Delta g. Our result holds under the condition that the metric tensor g is known in an arbitrary small subdomain. We also consider the case of closed manifolds and provide an improvement of the main result in [A. Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderon problem on closed Riemannian manifolds, preprint (2021); arXiv:2112.03480].
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Revisiting the Anisotropic Fractional Calderón Problem
    Rueland, Angkana
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (05)
  • [2] FRACTIONAL CALDER<acute accent>ON PROBLEM ON A CLOSED RIEMANNIAN MANIFOLD
    Feizmohammadi, Ali
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (04) : 2991 - 3013
  • [3] The Linearized Calderón Problem on Complex Manifolds
    Colin GUILLARMOU
    Mikko SALO
    Leo TZOU
    Acta Mathematica Sinica, 2019, 35 (06) : 1043 - 1056
  • [4] The Linearized Calderón Problem on Complex Manifolds
    Colin GUILLARMOU
    Mikko SALO
    Leo TZOU
    Acta Mathematica Sinica,English Series, 2019, 35 (06) : 1043 - 1056
  • [5] The Linearized Calderón Problem on Complex Manifolds
    Colin Guillarmou
    Mikko Salo
    Leo Tzou
    Acta Mathematica Sinica, English Series, 2019, 35 : 1043 - 1056
  • [6] The Yamabe problem and applications on noncompact complete Riemannian manifolds
    Kim, ST
    GEOMETRIAE DEDICATA, 1997, 64 (03) : 373 - 381
  • [7] The Yamabe Problem and Applications on Noncompact Complete Riemannian Manifolds
    Seongtag Kim
    Geometriae Dedicata, 1997, 64 : 373 - 381
  • [8] SEMILINEAR CALDER Ó N PROBLEM ON STEIN MANIFOLDS WITH KaHLER METRIC
    Ma, Yilin
    Tzou, Leo
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (01) : 132 - 144
  • [9] The Calderón problem for the fractional Schrödinger equation with drift
    Mihajlo Cekić
    Yi-Hsuan Lin
    Angkana Rüland
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [10] Fractional Sobolev spaces on Riemannian manifolds
    Caselli, Michele
    Florit-Simon, Enric
    Serra, Joaquim
    MATHEMATISCHE ANNALEN, 2024, 390 (04) : 6249 - 6314