Hierarchical Monte Carlo Tree Search for Latent Skill Planning

被引:0
|
作者
Pei, Yue [1 ]
机构
[1] Univ Pittsburgh, Pittsburgh, PA 15213 USA
关键词
deep reinforcement learning; monte carlo tree search; REINFORCEMENT; GO;
D O I
10.1145/3590003.3590005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monte Carlo Tree Search (MCTS) continues to confront the issue of exponential complexity growth in certain tasks when the planning horizon is excessively long, causing the trajectory's past to grow exponentially. Our study presents Hierarchical MCTS Latent Skill Planner, an algorithm based on skill discovery that automatically identifies skills based on intrinsic rewards and integrates them with MCTS, enabling efficient decision-making at a higher level. In the grid world maze domain, we found that latent skill search outperformed the standard MCTS approach that do not contain skills in terms of efficiency and performance.
引用
收藏
页码:6 / 12
页数:7
相关论文
共 50 条
  • [31] Adaptive Reward for CAV Action Planning using Monte Carlo Tree Search
    Patel, Dhruvkumar
    Zalila-Wenkstern, Rym
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 1105 - 1111
  • [32] Approximation Methods for Monte Carlo Tree Search
    Aksenov, Kirill
    Panov, Aleksandr, I
    PROCEEDINGS OF THE FOURTH INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'19), 2020, 1156 : 68 - 74
  • [33] A TUTORIAL INTRODUCTION TO MONTE CARLO TREE SEARCH
    Fu, Michael C.
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 1178 - 1193
  • [34] KB-Tree: Learnable and Continuous Monte-Carlo Tree Search for Autonomous Driving Planning
    Lei, Lanxin
    Luo, Ruiming
    Zheng, Renjie
    Wang, Jingke
    Zhang, JianWei
    Qiu, Cong
    Ma, Liulong
    Jin, Liyang
    Zhang, Ping
    Chen, Junbo
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 4493 - 4500
  • [35] Monte-Carlo Tree Search for Logistics
    Edelkamp, Stefan
    Gath, Max
    Greulich, Christoph
    Humann, Malte
    Herzog, Otthein
    Lawo, Michael
    COMMERCIAL TRANSPORT, 2016, : 427 - 440
  • [36] LinUCB applied to Monte Carlo tree search
    Mandai, Yusaku
    Kaneko, Tomoyuki
    THEORETICAL COMPUTER SCIENCE, 2016, 644 : 114 - 126
  • [37] Monte Carlo Tree Search for Trading and Hedging
    Vittori, Edoardo
    Likmeta, Amarildo
    Restelli, Marcello
    ICAIF 2021: THE SECOND ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, 2021,
  • [38] A Survey of Monte Carlo Tree Search Methods
    Browne, Cameron B.
    Powley, Edward
    Whitehouse, Daniel
    Lucas, Simon M.
    Cowling, Peter I.
    Rohlfshagen, Philipp
    Tavener, Stephen
    Perez, Diego
    Samothrakis, Spyridon
    Colton, Simon
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2012, 4 (01) : 1 - 43
  • [39] Nonasymptotic Analysis of Monte Carlo Tree Search
    Shah, Devavrat
    Xie, Qiaomin
    Xu, Zhi
    OPERATIONS RESEARCH, 2022, 70 (06) : 3234 - 3260
  • [40] On Monte Carlo Tree Search and Reinforcement Learning
    Vodopivec, Tom
    Samothrakis, Spyridon
    Ster, Branko
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2017, 60 : 881 - 936