Solid Polymer Electrolytes with Dual Anion Synergy and Twofold Reinforcement Effect for All-Solid-State Lithium Batteries

被引:6
|
作者
Bandyopadhyay, Sumana [1 ]
Joshi, Aashish [1 ,2 ]
Gupta, Amit [3 ]
Srivastava, Rajiv K. [1 ]
Nandan, Bhanu [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Text & Fibre Engn, New Delhi 110016, India
[2] Indian Inst Technol Delhi, Sch Interdisciplinary Res, New Delhi 110016, India
[3] Indian Inst Technol Delhi, Dept Mech Engn, New Delhi 110016, India
关键词
solid polymer electrolyte; semi-interpenetrating polymernetwork; electrospun nanofibers; 3D-reinforced; all-solid-state lithium battery; COMPOSITE ELECTROLYTE; POLY(ETHYLENE GLYCOL); PEO; NANOFIBERS; CHEMISTRY; BEHAVIOR; DENSITY; LITFSI;
D O I
10.1021/acsami.3c11377
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solid polymer electrolytes (SPEs) have emerged as a viable alternative to traditional organic liquid-based electrolytes for high energy density and safer lithium batteries. Poly(ethylene oxide) (PEO)-based SPEs are considered one of the mainstream SPE materials with excellent dissociation ability of lithium salts. However, the inferior ionic conductivity at room temperature and poor dimensional stability at high temperature limit their utilization. In this work, a semi-interpenetrating polymer network (semi-IPN) forming a precursor based on an ionic liquid (IL) monomer and linear PEO chains were introduced into an electrospun poly(acrylonitrile) (PAN) fibrous mat with subsequent thermal-initiated cross-linking. 1,4-Diazabicyclo [2.2.2] octane (DABCO) and 4-(chloromethyl) styrene were used to synthesize the styrenic-DABCO-based IL monomer with bis(trifluoromethane sulfonyl)imide (TFSI-) or bis(fluoromethane sulfonyl)imide (FSI-) as the anion, named as SDTFSI and SDFSI, respectively. Together, the FSI- and TFSI- anions demonstrate a synergistic effect in providing ion-conductive LiF and Li3N-rich inorganic SEI layer with enhanced lithium dendrite suppression ability. The twofold reinforcement effect is achieved collectively from the semi-IPN structure and the three-dimensional (3D) PAN network that help to construct highly efficient and uniform ion transport channels with excellent flexibility, further suppressing the lithium dendrite growth. The SPEs were dimensionally stable even at elevated temperatures of 150 degrees C. Moreover, the SPEs show an ionic conductivity of 4.4 x 10(-4) S cm(-1) at 25 degrees C and 1.81 x 10(-3) S cm(-1) at 55 degrees C and a lithium-ion transference number of 0.56. The favorable electrochemical performance of the SPEs was verified by operating LiFePO4/Li and NMC/Li cells.
引用
收藏
页码:51135 / 51150
页数:16
相关论文
共 50 条
  • [21] Polyphosphazene-Based Anion-Anchored Polymer Electrolytes For All-Solid-State Lithium Metal Batteries
    Johnson, Billy R.
    Raman, Ashwin Sankara
    Narla, Aashray
    Jhulki, Samik
    Chen, Lihua
    Marder, Seth R.
    Ramprasad, Rampi
    Turcheniuk, Kostia
    Yushin, Gleb
    ACS OMEGA, 2024, 9 (13): : 15410 - 15420
  • [22] Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries
    Lian, Peng-Jie
    Zhao, Bo-Sheng
    Zhang, Lian-Qi
    Xu, Ning
    Wu, Meng-Tao
    Gao, Xue-Ping
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (36) : 20540 - 20557
  • [23] Review on solid electrolytes for all-solid-state lithium-ion batteries
    Zheng, Feng
    Kotobuki, Masashi
    Song, Shufeng
    Lai, Man On
    Lu, Li
    JOURNAL OF POWER SOURCES, 2018, 389 : 198 - 213
  • [24] Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries
    Liu, Li
    Zhang, Dechao
    Xu, Xijun
    Liu, Zhengbo
    Liu, Jun
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2021, 37 (02) : 210 - 231
  • [25] Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries
    Li Liu
    Dechao Zhang
    Xijun Xu
    Zhengbo Liu
    Jun Liu
    Chemical Research in Chinese Universities, 2021, 37 : 210 - 231
  • [26] Nitride solid-state electrolytes for all-solid-state lithium metal batteries
    Li, Weihan
    Li, Minsi
    Ren, Haoqi
    Kim, Jung Tae
    Li, Ruying
    Sham, Tsun-Kong
    Sun, Xueliang
    ENERGY & ENVIRONMENTAL SCIENCE, 2025,
  • [27] Designing the Interface Layer of Solid Electrolytes for All-Solid-State Lithium Batteries
    Xia, Qian
    Yuan, Shuoguo
    Zhang, Qiang
    Huang, Can
    Liu, Jun
    Jin, Hongyun
    ADVANCED SCIENCE, 2024, 11 (29)
  • [28] Enhanced Electrochemical Performance of Hybrid Solid Polymer Electrolytes Encompassing Viologen for All-Solid-State Lithium Polymer Batteries
    Angulakhsmi, Natarajan
    Ambrose, Bebin
    Sathya, Swamickan
    Kathiresan, Murugavel
    Lingua, Gabriele
    Ferrari, Stefania
    Gowd, Erathimmanna Bhoje
    Wang, Wenyang
    Shen, Cai
    Elia, Giuseppe Antonio
    Gerbaldi, Claudio
    Stephan, Arul Manuel
    ACS MATERIALS AU, 2023, 3 (05): : 528 - 539
  • [29] Rigid-flexible coupling network solid polymer electrolytes for all-solid-state lithium metal batteries
    Wu, Jian-Chun
    Gao, Shuobin
    Li, Xiaowei
    Zhou, Haitao
    Gao, Hongquan
    Hu, Jinlong
    Fan, Zhonghui
    Liu, Yunjian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 661 : 1025 - 1032
  • [30] Stereolithography Three-Dimensional Printing Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries
    He, Yingjie
    Chen, Shaojie
    Nie, Lu
    Sun, Zhetao
    Wu, Xinsheng
    Liu, Wei
    NANO LETTERS, 2020, 20 (10) : 7136 - 7143