Online Video Anomaly Detection

被引:1
|
作者
Zhang, Yuxing [1 ]
Song, Jinchen [1 ]
Jiang, Yuehan [1 ]
Li, Hongjun [1 ,2 ]
机构
[1] Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
video surveillance; real time; online video anomaly detection; ABNORMAL EVENT DETECTION; CROWD BEHAVIOR DETECTION; REAL-TIME;
D O I
10.3390/s23177442
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With the popularity of video surveillance technology, people are paying more and more attention to how to detect abnormal states or events in videos in time. Therefore, real-time, automatic and accurate detection of abnormal events has become the main goal of video-based surveillance systems. To achieve this goal, many researchers have conducted in-depth research on online video anomaly detection. This paper presents the background of the research in this field and briefly explains the research methods of offline video anomaly detection. Then, we sort out and classify the research methods of online video anomaly detection and expound on the basic ideas and characteristics of each method. In addition, we summarize the datasets commonly used in online video anomaly detection and compare and analyze the performance of the current mainstream algorithms according to the evaluation criteria of each dataset. Finally, we summarize the future trends in the field of online video anomaly detection.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Evaluating the Effectiveness of Video Anomaly Detection in the Wild Online Learning and Inference for Real-world Deployment
    Yao, Shanle
    Noghre, Ghazal Alinezhad
    Pazho, Armin Danesh
    Tabkhi, Hamed
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW, 2024, : 4832 - 4841
  • [32] Online Clustering for Evolving Data Streams with Online Anomaly Detection
    Chenaghlou, Milad
    Moshtaghi, Masud
    Leckie, Christopher
    Salehi, Mahsa
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT II, 2018, 10938 : 506 - 519
  • [33] Global Information Guided Video Anomaly Detection
    Lv, Hui
    Xu, Chunyan
    Cui, Zhen
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 4679 - 4683
  • [34] Normality Learning in Multispace for Video Anomaly Detection
    Zhang, Yu
    Nie, Xiushan
    He, Rundong
    Chen, Meng
    Yin, Yilong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (09) : 3694 - 3706
  • [35] Domain generalization for video anomaly detection considering diverse anomaly types
    Wang, Zhiqiang
    Gu, Xiaojing
    Yan, Huaicheng
    Gu, Xingsheng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (04) : 3691 - 3704
  • [36] Video anomaly detection algorithm based on effective anomaly sample construction
    Hou C.-P.
    Zhao C.-Y.
    Wang Z.-P.
    Tian H.-R.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2021, 51 (05): : 1823 - 1829
  • [37] Domain generalization for video anomaly detection considering diverse anomaly types
    Zhiqiang Wang
    Xiaojing Gu
    Huaicheng Yan
    Xingsheng Gu
    Signal, Image and Video Processing, 2024, 18 : 3691 - 3704
  • [38] Analysis of Anomaly Detection Techniques in Video Surveillance
    Ovhal, Karuna B.
    Patange, Sonal S.
    Shinde, Reshma S.
    Tarange, Vaishnavi K.
    Kotkar, Vijay A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2017), 2017, : 596 - 601
  • [39] A Comprehensive Review for Video Anomaly Detection on Videos
    Abbas, Zainab K.
    Al-Ani, Ayad A.
    PROCEEDING OF THE 2ND 2022 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (CSASE 2022), 2022, : 30 - 35
  • [40] AnomalyNet: An Anomaly Detection Network for Video Surveillance
    Zhou, Joey Tianyi
    Du, Jiawei
    Zhu, Hongyuan
    Peng, Xi
    Liu, Yong
    Goh, Rick Siow Mong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2019, 14 (10) : 2537 - 2550