Parameter estimation of gravitational waves with a quantum metropolis algorithm

被引:5
|
作者
Escrig, Gabriel [1 ]
Campos, Roberto [1 ,2 ]
Casares, Pablo A. M. [1 ]
Martin-Delgado, M. A. [1 ,3 ]
机构
[1] Univ Complutense Madrid, Dept Fis Teor, Madrid, Spain
[2] Quasar Sci Resources, SL, Madrid, Spain
[3] Univ Politecn Madrid, CCS Ctr Computat Simulat, Madrid, Spain
关键词
gravitational waves; quantum walks; Metropolis-Hastings algorithms;
D O I
10.1088/1361-6382/acafcf
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
After the first detection of a gravitational wave in 2015, the number of successes achieved by this innovative way of looking through the Universe has not stopped growing. However, the current techniques for analyzing this type of events present a serious bottleneck due to the high computational power they require. In this article we explore how recent techniques based on quantum algorithms could surpass this obstacle. For this purpose, we propose a quantization of the classical algorithms used in the literature for the inference of gravitational wave parameters based on the well-known quantum walks technique applied to a Metropolis-Hastings algorithm. Finally, we develop a quantum environment on classical hardware, implementing a metric to compare quantum versus classical algorithms in a fair way. We further test all these developments in the real inference of several sets of parameters of all the events of the first detection period GWTC-1 and we find a polynomial advantage in the quantum algorithms, thus setting a first starting point for future algorithms.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Quantum Emulation of Gravitational Waves
    Ivan Fernandez-Corbaton
    Mauro Cirio
    Alexander Büse
    Lucas Lamata
    Enrique Solano
    Gabriel Molina-Terriza
    Scientific Reports, 5
  • [22] Quantum Emulation of Gravitational Waves
    Fernandez-Corbaton, Ivan
    Cirio, Mauro
    Buese, Alexander
    Lamata, Lucas
    Solano, Enrique
    Molina-Terriza, Gabriel
    SCIENTIFIC REPORTS, 2015, 5
  • [23] The quantum optics of gravitational waves
    Abrahao, Luca
    Coradeschi, Francesco
    Frassino, Antonia Micol
    Guerreiro, Thiago
    West, Jennifer Rittenhouse
    Schioppa, Enrico Junior
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (01)
  • [24] Parameter Estimation of Permanent Magnet Synchronous machine using Gravitational Search Algorithm
    Puri, Vinod
    Chauhan, Yogesh K.
    Singh, Nidhi
    2016 IEEE 6TH INTERNATIONAL CONFERENCE ON POWER SYSTEMS (ICPS), 2016,
  • [25] PARAMETER ESTIMATION ON GRAVITATIONAL WAVES FROM NEUTRON-STAR BINARIES WITH SPINNING COMPONENTS
    Farr, Ben
    Berry, Christopher P. L.
    Farr, Will M.
    Haster, Carl-Johan
    Middleton, Hannah
    Cannon, Kipp
    Graff, Philip B.
    Hanna, Chad
    Mandel, Ilya
    Pankow, Chris
    Price, Larry R.
    Sidery, Trevor
    Singer, Leo P.
    Urban, Alex L.
    Vecchio, Alberto
    Veitch, John
    Vitale, Salvatore
    ASTROPHYSICAL JOURNAL, 2016, 825 (02):
  • [26] Binary Black Hole Parameter Estimation from Gravitational Waves with Deep Learning Methods
    Sakellariou, Panagiotis N.
    Georgakopoulos, Spiros, V
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2024, 2024, 2141 : 70 - 81
  • [27] The return of GOLUM: improving distributed joint parameter estimation for strongly lensed gravitational waves
    Janquart, Justin
    Haris, K.
    Hannuksela, Otto A.
    van den Broeck, Chris
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 526 (02) : 3088 - 3098
  • [28] Quantum Parameter Estimation: From Experimental Design to Constructive Algorithm
    杨乐
    陈希
    张明
    戴宏毅
    CommunicationsinTheoreticalPhysics, 2017, 68 (11) : 641 - 646
  • [29] Quantum Parameter Estimation: From Experimental Design to Constructive Algorithm
    Yang, Le
    Chen, Xi
    Zhang, Ming
    Dai, Hong-Yi
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 68 (05) : 641 - 646
  • [30] An efficient parameter estimation of software reliability growth models using gravitational search algorithm
    Choudhary A.
    Baghel A.S.
    Sangwan O.P.
    International Journal of System Assurance Engineering and Management, 2017, 8 (1) : 79 - 88