Toward Robust Referring Image Segmentation

被引:6
|
作者
Wu, Jianzong [1 ]
Li, Xiangtai [1 ]
Li, Xia [2 ]
Ding, Henghui [3 ]
Tong, Yunhai [1 ]
Tao, Dacheng [4 ,5 ]
机构
[1] Peking Univ, Sch Intelligence Sci & Technol, Natl Key Lab Gen Artificial Intelligence, Beijing 100871, Peoples R China
[2] Swiss Fed Inst Technol, Dept Comp Sci, CH-8092 Zurich, Switzerland
[3] Swiss Fed Inst Technol, Dept Informat Technol & Elect Engn, CH-8092 Zurich, Switzerland
[4] Univ Sydney, Camperdown, NSW 2050, Australia
[5] Nanyang Technol Univ, Sch Comp Sci & Engn SCSE, Singapore 639798, Singapore
关键词
Computer vision; image segmentation; natural language processing;
D O I
10.1109/TIP.2024.3371348
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Referring Image Segmentation (RIS) is a fundamental vision-language task that outputs object masks based on text descriptions. Many works have achieved considerable progress for RIS, including different fusion method designs. In this work, we explore an essential question, "What if the text description is wrong or misleading?" For example, the described objects are not in the image. We term such a sentence as a negative sentence. However, existing solutions for RIS cannot handle such a setting. To this end, we propose a new formulation of RIS, named Robust Referring Image Segmentation (R-RIS). It considers the negative sentence inputs besides the regular positive text inputs. To facilitate this new task, we create three R-RIS datasets by augmenting existing RIS datasets with negative sentences and propose new metrics to evaluate both types of inputs in a unified manner. Furthermore, we propose a new transformer-based model, called RefSegformer, with a token-based vision and language fusion module. Our design can be easily extended to our R-RIS setting by adding extra blank tokens. Our proposed RefSegformer achieves state-of-the-art results on both RIS and R-RIS datasets, establishing a solid baseline for both settings. Our project page is at https://github.com/jianzongwu/robust-ref-seg.
引用
收藏
页码:1782 / 1794
页数:13
相关论文
共 50 条
  • [21] Structured Multimodal Fusion Network for Referring Image Segmentation
    Xue, Mingcheng
    Liu, Yu
    Xu, Kaiping
    Zhang, Haiyang
    Yu, Chengyang
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, ICMI 2022, 2022, : 36 - 47
  • [22] Locate then Segment: A Strong Pipeline for Referring Image Segmentation
    Jing, Ya
    Kong, Tao
    Wang, Wei
    Wang, Liang
    Li, Lei
    Tan, Tieniu
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9853 - 9862
  • [23] Learning From Box Annotations for Referring Image Segmentation
    Feng, Guang
    Zhang, Lihe
    Hu, Zhiwei
    Lu, Huchuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3927 - 3937
  • [24] PRNet: A Progressive Refinement Network for referring image segmentation
    Liu, Jing
    Jiang, Huajie
    Hu, Yongli
    Yin, Baocai
    NEUROCOMPUTING, 2025, 630
  • [25] A CONTEXT-BASED NETWORK FOR REFERRING IMAGE SEGMENTATION
    Li, Xinyu
    Liu, Yu
    Xu, Kaiping
    Zhao, Zhehuan
    Liu, Sipei
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1436 - 1440
  • [26] CARIS: Context-Aware Referring Image Segmentation
    Liu, Sun-Ao
    Zhang, Yiheng
    Qiu, Zhaofan
    Xie, Hongtao
    Zhang, Yongdong
    Yao, Ting
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 779 - 788
  • [27] Query Reconstruction Network for Referring Expression Image Segmentation
    Shi, Hengcan
    Li, Hongliang
    Wu, Qingbo
    Ngan, King Ngi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 995 - 1007
  • [28] Advancing Referring Expression Segmentation Beyond Single Image
    Wu, Yixuan
    Zhang, Zhao
    Xie, Chi
    Zhu, Feng
    Zhao, Rui
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 2628 - 2638
  • [29] Referring Image Segmentation via Recurrent Refinement Networks
    Li, Ruiyu
    Li, Kaican
    Kuo, Yi-Chun
    Shu, Michelle
    Qi, Xiaojuan
    Shen, Xiaoyong
    Jia, Jiaya
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5745 - 5753
  • [30] Bilateral Knowledge Interaction Network for Referring Image Segmentation
    Ding, Haixin
    Zhang, Shengchuan
    Wu, Qiong
    Yu, Songlin
    Hu, Jie
    Cao, Liujuan
    Ji, Rongrong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2966 - 2977