Positron Emission Tomography-Derived Radiomics and Artificial Intelligence in Multiple Myeloma: State-of-the-Art

被引:1
|
作者
Manco, Luigi [1 ]
Albano, Domenico [2 ,3 ]
Urso, Luca [4 ]
Arnaboldi, Mattia [5 ]
Castellani, Massimo [5 ]
Florimonte, Luigia [5 ]
Guidi, Gabriele [6 ]
Turra, Alessandro [1 ]
Castello, Angelo [5 ]
Panareo, Stefano [7 ]
机构
[1] Azienda USL Ferrara, Med Phys Unit, I-45100 Ferrara, Italy
[2] Univ Brescia, Nucl Med Dept, I-25123 Brescia, Italy
[3] ASST Spedali Civili Brescia, I-25123 Brescia, Italy
[4] Univ Ferrara, Dept Translat Med, I-44121 Ferrara, Italy
[5] Osped Maggiore Policlin, Fdn IRCCS Ca Granda, Nucl Med Unit, I-20122 Milan, Italy
[6] Univ Hosp Modena, Med Phys Unit, I-41125 Modena, Italy
[7] Univ Hosp Modena, Dept Oncol & Hematol, Nucl Med Unit, Via Pozzo 71, I-41124 Modena, Italy
关键词
radiomics; artificial intelligence; AI; machine learning; deep learning; multiple myeloma; positron emission tomography; PET; PET/CT; DISEASE; DIAGNOSIS; CRITERIA; PROPOSAL; IMAGES;
D O I
10.3390/jcm12247669
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Multiple myeloma (MM) is a heterogeneous neoplasm accounting for the second most prevalent hematologic disorder. The identification of noninvasive, valuable biomarkers is of utmost importance for the best patient treatment selection, especially in heterogeneous diseases like MM. Despite molecular imaging with positron emission tomography (PET) has achieved a primary role in the characterization of MM, it is not free from shortcomings. In recent years, radiomics and artificial intelligence (AI), which includes machine learning (ML) and deep learning (DL) algorithms, have played an important role in mining additional information from medical images beyond human eyes' resolving power. Our review provides a summary of the current status of radiomics and AI in different clinical contexts of MM. A systematic search of PubMed, Web of Science, and Scopus was conducted, including all the articles published in English that explored radiomics and AI analyses of PET/CT images in MM. The initial results have highlighted the potential role of such new features in order to improve the clinical stratification of MM patients, as well as to increase their clinical benefits. However, more studies are warranted before these approaches can be implemented in clinical routines.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Artificial Intelligence in Cardiovascular Imaging JACC State-of-the-Art Review
    Dey, Damini
    Slomka, Piotr J.
    Leeson, Paul
    Comaniciu, Dorin
    Shrestha, Sirish
    Sengupta, Partho P.
    Marwick, Thomas H.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (11) : 1317 - 1335
  • [42] Application of artificial intelligence in geotechnical engineering: A state-of-the-art review
    Baghbani, Abolfazl
    Choudhury, Tanveer
    Costa, Susanga
    Reiner, Johannes
    [J]. EARTH-SCIENCE REVIEWS, 2022, 228
  • [43] Positron emission tomography for the prediction of progression free survival in multiple myeloma
    Hoffmann, M.
    Dimitrakopoulou-Strauss, A.
    Bergner, R.
    Strauss, L. G.
    Uppenkamp, M.
    [J]. HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2007, 92 (06): : 139 - 139
  • [44] Positron emission tomography in prostate cancer: An update on state of the art
    Das, Chandan Jyoti
    Razik, Abdul
    Sharma, Sanjay
    [J]. INDIAN JOURNAL OF UROLOGY, 2018, 34 (03) : 172 - 179
  • [45] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Amyloid Arthropathy Associated to Multiple Myeloma
    Sabate-Llobera, Aida
    Llinares, Elena
    Vallansot, Rolando
    Landeyro, Julieta
    Gamez-Cenzano, Cristina
    [J]. JCR-JOURNAL OF CLINICAL RHEUMATOLOGY, 2020, 26 (01) : E20 - E23
  • [46] Proteasome inhibition in combination with immunotherapies: State-of-the-Art in multiple myeloma
    Kegyes, David
    Gulei, Diana
    Drula, Rares
    Cenariu, Diana
    Tigu, Bogdan
    Dima, Delia
    Tanase, Alina
    Badelita, Sorina
    Buzoianu, Anca-Dana
    Ciurea, Stefan
    Ghiaur, Gabriel
    Terpos, Evangelos
    Ciechanover, Aaron
    Einsele, Hermann
    Tomuleasa, Ciprian
    [J]. BLOOD REVIEWS, 2023, 61
  • [47] Gamma-ray medical imaging: Research and development for state-of-the-art positron emission tomography (PET) instrumentations
    Yamaya, Taiga
    [J]. Journal of the Vacuum Society of Japan, 2014, 57 (02) : 45 - 50
  • [48] Radiomics and artificial intelligence analysis of CT data for the identification of prognostic features in multiple myeloma
    Schenone, Daniela
    Lai, Rita
    Cea, Michele
    Rossi, Federica
    Torri, Lorenzo
    Bignotti, Bianca
    Succio, Giulia
    Gualco, Stefano
    Conte, Alessio
    Dominietto, Alida
    Massone, Anna Maria
    Piana, Michele
    Campi, Cristina
    Frassoni, Francesco
    Sambuceti, Gianmario
    Tagliafico, Alberto Stefano
    [J]. MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [49] Clinical Application of Artificial Intelligence in Positron Emission Tomography: Imaging of Prostate Cancer
    Ma, Kevin
    Harmon, Stephanie A.
    Klyuzhin, Ivan S.
    Rahmim, Arman
    Turkbey, Baris
    [J]. PET CLINICS, 2022, 17 (01) : 137 - 143
  • [50] Structural Modeling of Nanobodies: A Benchmark of State-of-the-Art Artificial Intelligence Programs
    Valdes-Tresanco, Mario S.
    Valdes-Tresanco, Mario E.
    Jimenez-Gutierrez, Daiver E.
    Moreno, Ernesto
    [J]. MOLECULES, 2023, 28 (10):