A new low-cost feasible projection algorithm for pseudomonotone variational inequalities

被引:0
|
作者
Zhang, Yongle [1 ]
Feng, Limei [1 ]
He, Yiran [1 ]
机构
[1] Sichuan Normal Univ, Dept Math, Visual Comp & Virtual Real Key Lab Sichuan Prov, Chengdu 610066, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Feasible algorithm; Variational inequalities; Pseudomonotone mapping; Lipschitz continuous; SUBGRADIENT EXTRAGRADIENT METHOD; CONVERGENCE;
D O I
10.1007/s11075-023-01622-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we design a low-cost feasible projection algorithm for variational inequalities by replacing the projection onto the feasible set with the projection onto a ball. In each iteration, it only needs to calculate the value of the mapping once, and the projection onto the ball contained in the feasible set (which has an explicit expression), so the algorithm is easier to implement and feasible. The convergence of the algorithm is proved when the Slater condition holds for the feasible set and the mapping is pseudomonotone, Lipschitz continuous. Finally, some numerical examples are given to illustrate the effectiveness of the algorithm.
引用
收藏
页码:1031 / 1054
页数:24
相关论文
共 50 条
  • [31] The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds
    Tang, Guo-ji
    Zhou, Li-wen
    Huang, Nan-jing
    OPTIMIZATION LETTERS, 2013, 7 (04) : 779 - 790
  • [32] A novel accelerated extragradient algorithm to solve pseudomonotone variational inequalities
    Noinakorn, Supansa
    Wairojjana, Nopparat
    Pakkaranang, Nuttapol
    Pholasa, Natttawut
    ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (01) : 201 - 218
  • [33] A New Extragradient Method for Strongly Pseudomonotone Variational Inequalities
    Pham Duy Khanh
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (09) : 1131 - 1143
  • [34] A novel accelerated extragradient algorithm to solve pseudomonotone variational inequalities
    Supansa Noinakorn
    Nopparat Wairojjana
    Nuttapol Pakkaranang
    Natttawut Pholasa
    Arabian Journal of Mathematics, 2023, 12 : 201 - 218
  • [35] Modified self-adaptive projection method for solving pseudomonotone variational inequalities
    Yu, Zeng
    Shao, Hu
    Wang, Guodong
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (20) : 8052 - 8060
  • [36] On gradient projection methods for strongly pseudomonotone variational inequalities without Lipschitz continuity
    Hai, Trinh Ngoc
    OPTIMIZATION LETTERS, 2020, 14 (05) : 1177 - 1191
  • [37] Halpern projection methods for solving pseudomonotone multivalued variational inequalities in Hilbert spaces
    Pham Ngoc Anh
    T. V. Thang
    H. T. C. Thach
    Numerical Algorithms, 2021, 87 : 335 - 363
  • [38] On gradient projection methods for strongly pseudomonotone variational inequalities without Lipschitz continuity
    Trinh Ngoc Hai
    Optimization Letters, 2020, 14 : 1177 - 1191
  • [39] Halpern projection methods for solving pseudomonotone multivalued variational inequalities in Hilbert spaces
    Pham Ngoc Anh
    Thang, T., V
    Thach, H. T. C.
    NUMERICAL ALGORITHMS, 2021, 87 (01) : 335 - 363
  • [40] AN INERTIAL SUBGRADIENT-EXTRAGRADIENT ALGORITHM FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES
    Liu, Liya
    Petrusel, Adrian
    Qin, Xiaolong
    Yao, Jen-Chih
    FIXED POINT THEORY, 2022, 23 (02): : 533 - 555