Analysis of JS']JS-contractions with applications to fractional boundary value problems

被引:1
|
作者
Mehmood, Nayyar [1 ]
Nisar, Zubair [1 ]
Mukheimer, Aiman [2 ]
Abdeljawad, Thabet [2 ,3 ,4 ]
机构
[1] Int Islamic Univ, Dept Math & Stat, H-10, Islamabad, Pakistan
[2] Prince Sultan Univ, Dept Math & Sci, POB 66833, Riyadh 11586, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Kyung Hee Univ, Dept Math, 26 Kyungheedae Ro, Seoul 02447, South Korea
关键词
& theta; -contraction; Modified [!text type='JS']JS[!/text]-contraction; Modified weak [!text type='JS']JS[!/text]-contraction; Existence results; -Ulam stability;
D O I
10.1186/s13660-023-03005-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we modify JS-contractions by weakening the conditions on the function 0, where 0 : (0, 8) ? (1, 8) is a strictly increasing function. We prove fixed-point results for obtained contractions. Some examples are given to validate the results and modifications. We use our main theorem to establish the existence results for the solutions of the Atangana-Baleanu-Caputo fractional boundary value problem with integral boundary conditions. We also present a new definition of 0-Ulam stability and find the stability of our fractional boundary value problem.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A new class of fractional boundary value problems
    Ahmad, Bashir
    Alsaedi, Ahmed
    Assolami, Afrah
    Agarwal, Ravi P.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [42] Multiple Solutions for Fractional Boundary Value Problems
    Diego Averna
    Donal O’Regan
    Elisabetta Tornatore
    [J]. Bulletin of the Iranian Mathematical Society, 2018, 44 : 137 - 148
  • [43] Boundary value problems for fractional differential equations
    Hu, Zhigang
    Liu, Wenbin
    Liu, Jiaying
    [J]. BOUNDARY VALUE PROBLEMS, 2014, : 1 - 11
  • [44] Extremal points for fractional boundary value problems
    Johnny Henderson
    Charles Nelms
    Dingjiang Wang
    Aijun Yang
    [J]. The European Physical Journal Special Topics, 2017, 226 : 3445 - 3456
  • [45] System of fractional boundary value problems at resonance
    Khadidja Iatime
    Lamine Guedda
    Smaïl Djebali
    [J]. Fractional Calculus and Applied Analysis, 2023, 26 : 1359 - 1383
  • [46] Compactness of fractional embeddings for boundary value problems
    Idczak, Dariusz
    Majewski, Marek
    [J]. 2013 18TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2013, : 599 - 603
  • [47] Boundary value problems for fractional differential equations
    Zhigang Hu
    Wenbin Liu
    Jiaying Liu
    [J]. Boundary Value Problems, 2014
  • [48] On discrete sequential fractional boundary value problems
    Goodrich, Christopher S.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) : 111 - 124
  • [49] Regular fractional dissipative boundary value problems
    Dumitru Baleanu
    Ekin Uğurlu
    [J]. Advances in Difference Equations, 2016
  • [50] Boundary value problems for fractional diffusion equations
    Metzler, R
    Klafter, J
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 278 (1-2) : 107 - 125