On recovery of an unbounded bi-periodic interface for the inverse fluid-solid interaction scattering problem

被引:0
|
作者
Cui, Yanli [1 ]
Qu, Fenglong [1 ]
Wei, Changkun [2 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[2] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
来源
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Inverse scattering; bi-periodic interface; uniqueness; fluid-solid interaction; FINITE-ELEMENT-METHOD; FACTORIZATION METHOD; UNIQUENESS;
D O I
10.1515/jiip-2021-0070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the inverse scattering of acoustic waves by an unbounded periodic elastic medium in the three-dimensional case. A novel uniqueness theorem is proved for the inverse problem of recovering a bi-periodic interface between acoustic and elastic waves using the near-field data measured only from the acoustic side of the interface, corresponding to a countably infinite number of quasi-periodic incident acoustic waves. The proposed method depends only on a fundamental a priori estimate established for the acoustic and elastic wave fields and a new mixed-reciprocity relation established in this paper for the solutions of the fluid-solid interaction scattering problem.
引用
收藏
页码:431 / 440
页数:10
相关论文
共 50 条
  • [1] THE FACTORIZATION METHOD FOR AN INVERSE FLUID-SOLID INTERACTION SCATTERING PROBLEM
    Kirsch, Andreas
    Ruiz, Albert
    [J]. INVERSE PROBLEMS AND IMAGING, 2012, 6 (04) : 681 - 695
  • [2] AN INVERSE FLUID-SOLID INTERACTION PROBLEM
    Monk, Peter
    Selgas, Virginia
    [J]. INVERSE PROBLEMS AND IMAGING, 2009, 3 (02) : 173 - 198
  • [3] An inverse problem for fluid-solid interaction
    Elschner, Johannes
    Hsiao, George C.
    Rathsfeld, Andreas
    [J]. INVERSE PROBLEMS AND IMAGING, 2008, 2 (01) : 83 - 119
  • [4] Modified transmission eigenvalues for inverse scattering in a fluid-solid interaction problem
    Monk, Peter
    Selgas, Virginia
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (01)
  • [5] Finite Element Method to Fluid-Solid Interaction Problems with Unbounded Periodic Interfaces
    Hu, Guanghui
    Rathsfeld, Andreas
    Yin, Tao
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (01) : 5 - 35
  • [6] Inverse Fluid-solid Interaction Scattering Problem Using Phased and Phaseless Far Field Data
    Ji, Xia
    Jia, Yun-fei
    Liu, Xiao-dong
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (01): : 74 - 94
  • [7] Inverse Fluid-solid Interaction Scattering Problem Using Phased and Phaseless Far Field Data
    Xia Ji
    Yun-fei Jia
    Xiao-dong Liu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 74 - 94
  • [8] An inverse electromagnetic scattering problem for a bi-periodic inhomogeneous layer on a perfectly conducting plate
    Hu, Guanghui
    Yang, Jiaqing
    Zhang, Bo
    [J]. APPLICABLE ANALYSIS, 2011, 90 (02) : 317 - 333
  • [9] The finite element method for modified transmission eigenvalues for inverse scattering in a fluid-solid interaction problem
    Wang, Shixi
    Bi, Hai
    Li, Yanjun
    Yang, Yidu
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 145
  • [10] Inverse Fluid-solid Interaction Scattering Problem Using Phased and Phaseless Far Field Data
    Xia JI
    Yun-fei JIA
    Xiao-dong LIU
    [J]. Acta Mathematicae Applicatae Sinica, 2020, 36 (01) : 74 - 94