IoT Network Anomaly Detection in Smart Homes Using Machine Learning

被引:9
|
作者
Sarwar, Nadeem [1 ]
Bajwa, Imran Sarwar [1 ]
Hussain, Muhammad Zunnurain [2 ]
Ibrahim, Muhammad [1 ]
Saleem, Khizra [1 ]
机构
[1] Islamia Univ Bahawalpur, Dept Comp Sci, Bahawalpur 63100, Pakistan
[2] Bahria Univ Lahore Campus, Dept Comp Sci, Lahore 54600, Pakistan
关键词
Smart homes; IoT environment; cyber security; network anomaly detection; smart environments; machine learning; CHALLENGES; INTERNET; DEVICES; THINGS;
D O I
10.1109/ACCESS.2023.3325929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this modern age of technology, the Internet of Things has covered all aspects of life including smart situations, smart homes, and smart spaces. Smart homes have a large number of IoT objects that are working continuously without any interruption. Better security and authentication of these smart devices can provide peaceful environments to live in such spaces. It is important to monitor the activities of smart IoT devices to make them work fault-free. Such devices are small, consume relatively less power and resources, and are easily attackable by attackers. It is crucial to protect the integrity and characteristics of the smart home environment from external attacks. Machine Learning played a vital role in recognizing such malicious activities and attempts. Several Machine Learning approaches are available to detect the normal and abnormal behavior of IoT device traffic. This study proposed a machine learning-based anomaly detection approach for smart homes using different classifiers. Testing and evaluation are performed using the University of New South Wales (UNSW) BoT IoT dataset. Machine learning models based on four classifiers are built using an IoT devices dataset. For the Test dataset, the Weighted Precision, Recall, and F1 score of Random forest, decision tree, and AdaBoost is 1 as compared to ANN which has 0.98, 0.96, and 0.96 respectively Results show that high performance, precision, and robustness can be achieved using the proposed methodology. In this way, smart homes' security and identity of devices can be monitored and anomalies can be detected with high accuracy. Attack categories include binary class, multiclass class, and subclasses. Results show Random Forest algorithm outperforms enough to use this methodology in smart environments.
引用
收藏
页码:119462 / 119480
页数:19
相关论文
共 50 条
  • [41] Anomaly-based threat detection in smart health using machine learning
    Tabassum, Muntaha
    Mahmood, Saba
    Bukhari, Amal
    Alshemaimri, Bader
    Daud, Ali
    Khalique, Fatima
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [42] Machine Learning Methods for Anomaly Detection in IoT Networks, with Illustrations
    Bonandrini, Vassia
    Bercher, Jean-Francois
    Zangar, Nawel
    MACHINE LEARNING FOR NETWORKING (MLN 2019), 2020, 12081 : 287 - 295
  • [43] A machine learning approach for imputation and anomaly detection in IoT environment
    Vangipuram, Radhakrishna
    Gunupudi, Rajesh Kumar
    Puligadda, Veereswara Kumar
    Vinjamuri, Janaki
    EXPERT SYSTEMS, 2020, 37 (05)
  • [44] A Novel Algorithm for Network Anomaly Detection Using Adaptive Machine Learning
    Kumar, D. Ashok
    Venugopalan, S. R.
    PROGRESS IN ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, VOL 2, 2018, 564 : 59 - 69
  • [45] Anomaly detection in wireless sensor network using machine learning algorithm
    Poornima, I. Gethzi Ahila
    Paramasivan, B.
    COMPUTER COMMUNICATIONS, 2020, 151 : 331 - 337
  • [46] Anomaly Detection in Network Traffic Using Advanced Machine Learning Techniques
    Ness, Stephanie
    Eswarakrishnan, Vishwanath
    Sridharan, Harish
    Shinde, Varun
    Janapareddy, Naga Venkata Prasad
    Dhanawat, Vineet
    IEEE ACCESS, 2025, 13 : 16133 - 16149
  • [47] A machine learning framework for network anomaly detection using SVM and GA
    Shon, T
    Kim, Y
    Lee, C
    Moon, A
    PROCEEDINGS FROM THE SIXTH ANNUAL IEEE SYSTEMS, MAN AND CYBERNETICS INFORMATION ASSURANCE WORKSHOP, 2005, : 176 - 183
  • [48] Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT
    Rose, Joseph R.
    Swann, Matthew
    Bendiab, Gueltoum
    Shiaeles, Stavros
    Kolokotronis, Nicholas
    PROCEEDINGS OF THE 2021 IEEE 7TH INTERNATIONAL CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT 2021): ACCELERATING NETWORK SOFTWARIZATION IN THE COGNITIVE AGE, 2021, : 409 - 415
  • [49] Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT
    Ben Slimane, Jihane
    Abd-Elkawy, Eman H.
    Maqbool, Albia
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 2140 - 2149
  • [50] Anomaly Detection in Industrial Machinery Using IoT Devices and Machine Learning: A Systematic Mapping
    Chevtchenko, Sergio F.
    Rocha, Elisson Da Silva
    Dos Santos, Monalisa Cristina Moura
    Mota, Ricardo Lins
    Vieira, Diego Moura
    De Andrade, Ermeson Carneiro
    De Araujo, Danilo Ricardo Barbosa
    IEEE ACCESS, 2023, 11 : 128288 - 128305