A systematic review of state-of-the-art strategies for machine learning-based protein function prediction

被引:9
|
作者
Yan, Tian-Ci [1 ]
Yue, Zi-Xuan [1 ]
Xu, Hong-Quan [1 ]
Liu, Yu-Hong [1 ]
Hong, Yan-Feng [1 ]
Chen, Gong-Xing [1 ]
Tao, Lin [1 ]
Xie, Tian [1 ]
机构
[1] Hangzhou Normal Univ, Sch Pharm, Key Lab Elemene Class Anticanc Chinese Med, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
Protein function prediction; Drug targets discovery; Machine learning; Multi-information fusion; Multi-algorithm integration; FUNCTION ASSOCIATIONS; BINDING; SEQUENCE; DOMAIN; IDENTIFICATION; FAMILIES; COFACTOR; SITES;
D O I
10.1016/j.compbiomed.2022.106446
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
New drug discovery is inseparable from the discovery of drug targets, and the vast majority of the known targets are proteins. At the same time, proteins are essential structural and functional elements of living cells necessary for the maintenance of all forms of life. Therefore, protein functions have become the focus of many pharma-cological and biological studies. Traditional experimental techniques are no longer adequate for rapidly growing annotation of protein sequences, and approaches to protein function prediction using computational methods have emerged and flourished. A significant trend has been to use machine learning to achieve this goal. In this review, approaches to protein function prediction based on the sequence, structure, protein-protein interaction (PPI) networks, and fusion of multi-information sources are discussed. The current status of research on protein function prediction using machine learning is considered, and existing challenges and prominent breakthroughs are discussed to provide ideas and methods for future studies.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A state-of-the-art review on adversarial machine learning in image classification
    Ashish Bajaj
    Dinesh Kumar Vishwakarma
    Multimedia Tools and Applications, 2024, 83 : 9351 - 9416
  • [22] Machine learning in medical applications: A review of state-of-the-art methods
    Shehab, Mohammad
    Abualigah, Laith
    Shambour, Qusai
    Abu-Hashem, Muhannad A.
    Shambour, Mohd Khaled Yousef
    Alsalibi, Ahmed Izzat
    Gandomi, Amir H.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
  • [23] Automated machine learning: Review of the state-of-the-art and opportunities for healthcare
    Waring, Jonathan
    Lindvall, Charlotta
    Umeton, Renato
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 104
  • [24] Machine Learning and Urban Drainage Systems: State-of-the-Art Review
    Kwon, Soon Ho
    Kim, Joong Hoon
    WATER, 2021, 13 (24)
  • [25] Machine Learning for Property Prediction and Optimization of Polymeric Nanocomposites: A State-of-the-Art
    Champa-Bujaico, Elizabeth
    Garcia-Diaz, Pilar
    Diez-Pascual, Ana M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (18)
  • [26] State-of-the-art bioinformatics protein structure prediction tools (Review)
    Pavlopoulou, Athanasia
    Michalopoulos, Ioannis
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2011, 28 (03) : 295 - 310
  • [27] Machine Learning-Based Road Safety Prediction Strategies for Internet of Vehicles (IoV) Enabled Vehicles: A Systematic Literature Review
    Reddy, K. Raveendra
    Muralidhar, A.
    IEEE ACCESS, 2023, 11 : 112108 - 112122
  • [28] Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review
    Jorayeva, Manzura
    Akbulut, Akhan
    Catal, Cagatay
    Mishra, Alok
    SENSORS, 2022, 22 (07)
  • [29] Machine Learning-Based Prediction Models for Delirium: A Systematic Review and Meta-Analysis
    Xie, Qi
    Wang, Xinglei
    Pei, Juhong
    Wu, Yinping
    Guo, Qiang
    Su, Yujie
    Yan, Hui
    Nan, Ruiling
    Chen, Haixia
    Dou, Xinman
    JOURNAL OF THE AMERICAN MEDICAL DIRECTORS ASSOCIATION, 2022, 23 (10) : 1655 - +
  • [30] RELIABILITY PREDICTION - A STATE-OF-THE-ART REVIEW
    OCONNOR, PDT
    HARRIS, LN
    IEE PROCEEDINGS-A-SCIENCE MEASUREMENT AND TECHNOLOGY, 1986, 133 (04): : 202 - 216