Visual and haptic feedback in detecting motor imagery within a wearable brain-computer interface

被引:10
|
作者
Arpaia, Pasquale [1 ,2 ,3 ]
Coyle, Damien [4 ]
Donnarumma, Francesco [1 ,5 ]
Esposito, Antonio [1 ,6 ]
Natalizio, Angela [1 ,6 ]
Parvis, Marco [6 ]
机构
[1] Augmented Real Hlth Monitoring Lab ARHeMLab, Naples, Italy
[2] Univ Napoli Federico II, Dept Elect Engn & Informat Technol DIETI, Naples, Italy
[3] Univ Napoli Federico II, Ctr Interdipartimentale Ric Management Sanit & Inn, Naples, Italy
[4] Univ Ulster, Intelligent Syst Res Ctr, Derry, North Ireland
[5] Natl Res Council ISTC CNR, Inst Cognit Sci & Technol, Rome, Italy
[6] Politecn Torino, Dept Elect & Telecommun DET, Turin, Italy
基金
英国工程与自然科学研究理事会;
关键词
Brain-computer interface; Motor imagery; Electroencephalography; Extended reality; Haptic; Neurofeedback;
D O I
10.1016/j.measurement.2022.112304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a wearable brain-computer interface relying on neurofeedback in extended reality for the enhancement of motor imagery training. Visual and vibrotactile feedback modalities were evaluated when presented either singularly or simultaneously. Only three acquisition channels and state-of-the-art vibrotactile chest-based feedback were employed. Experimental validation was carried out with eight subjects participating in two or three sessions on different days, with 360 trials per subject per session. Neurofeedback led to statistically significant improvement in performance over the two/three sessions, thus demonstrating for the first time functionality of a motor imagery-based instrument even by using an utmost wearable electroencephalograph and a commercial gaming vibrotactile suit. In the best cases, classification accuracy exceeded 80% with more than 20% improvement with respect to the initial performance. No feedback modality was generally preferable across the cohort study, but it is concluded that the best feedback modality may be subject-dependent.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Design of a Robotic Wheelchair with a Motor Imagery based Brain-Computer Interface
    Kim, Keun-Tae
    Carlson, Tom
    Lee, Seong-Whan
    2013 IEEE INTERNATIONAL WINTER WORKSHOP ON BRAIN-COMPUTER INTERFACE (BCI), 2013, : 46 - 48
  • [32] A Novel Classification Method for Motor Imagery Based on Brain-Computer Interface
    Chen, Chih-Yu
    Wu, Chun-Wei
    Lin, Chin-Teng
    Chen, Shi-An
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 4099 - 4102
  • [33] Classification of motor imagery tasks for electrocorticogram based brain-computer interface
    Xu F.
    Zhou W.
    Zhen Y.
    Yuan Q.
    Zhou, W. (wdzhou@sdu.edu.cn), 1600, Springer Verlag (04): : 149 - 157
  • [34] Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification
    Mohammadi, Ehsan
    Daneshmand, Parisa Ghaderi
    Khorzooghi, Seyyed Mohammad Sadegh Moosavi
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2022, 12 (01): : 40 - 47
  • [35] Discrimination of Rest, Motor Imagery and Movement for Brain-Computer Interface Applications
    Ozturk, Nedime
    Yilmaz, Bulent
    2018 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2018,
  • [36] Asynchronous Motor Imagery Brain-Computer Interface for Simulated Drone Control
    Choi, Jin Woo
    Kim, Byung Hyung
    Jo, Sungho
    2021 9TH IEEE INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2021, : 133 - 137
  • [37] MOTOR IMAGERY OF LOWER LIMBS MOVEMENTS TO CONTROL BRAIN-COMPUTER INTERFACE
    Bobrova, E. V.
    Reshetnikova, V. V.
    Frolov, A. A.
    Gerasimenko, Y. P.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2019, 69 (05) : 529 - 540
  • [38] Performance variation in motor imagery brain-computer interface: A brief review
    Ahn, Minkyu
    Jun, Sung Chan
    JOURNAL OF NEUROSCIENCE METHODS, 2015, 243 : 103 - 110
  • [39] Genetic Programming for Feature Extraction in Motor Imagery Brain-Computer Interface
    de Souza, Gabriel Henrique
    Bernardino, Heder Soares
    Vieira, Alex Borges
    Correa Barbosa, Helio Jose
    PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2021), 2021, 12981 : 227 - 238
  • [40] Phase-Locking Factor in a Motor Imagery Brain-Computer Interface
    Carreiras, Carlos
    de Almeida, Luis Borges
    Miguel Sanches, J.
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 2877 - 2880