Addressing the Role of 2D Domains in High-Dimensionality Ruddlesden-Popper Perovskite for Solar Cells

被引:4
|
作者
Bravetti, Gianluca [1 ,2 ]
Altamura, Davide [3 ]
Paci, Barbara [4 ]
Generosi, Amanda [4 ]
Carallo, Sonia [2 ]
Guaragno, Marco [4 ]
Gigli, Giuseppe [1 ,2 ]
Listorti, Andrea [2 ,5 ]
Grancini, Giulia [6 ,7 ]
Giannini, Cinzia [3 ]
Colella, Silvia [8 ]
Rizzo, Aurora [2 ]
机构
[1] Univ Salento, Dept Math & Phys E De Giorgi, I-73100 Lecce, Italy
[2] CNR NANOTEC Ist Nanotecnol, I-73100 Lecce, Italy
[3] CNR Ist Cristallog, I-70126 Bari, Italy
[4] CNR ISM Ist Struttura Mat, I-00133 Rome, Italy
[5] Univ Bari, Dept Chem, I-70126 Bari, Italy
[6] Univ Pavia, Dept Chem, I-27100 Pavia, Italy
[7] Univ Pavia, INSTM, I-27100 Pavia, Italy
[8] Univ Bari, CNR NANOTEC, Dipartimento Chim, I-70126 Bari, Italy
基金
欧洲研究理事会; 巴西圣保罗研究基金会;
关键词
2D perovskites; energy-dispersive X-ray reflectivity (EDXR); grazing-incidence wide-angle X-ray scattering (GIWAXS); perovskite solar cells; Ruddlesden-Popper perovskites; LIGHT; EFFICIENT; PROGRESS;
D O I
10.1002/solr.202200860
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
High-dimensionality Ruddlesden-Popper (RP) perovskites, with general formula R(2)A(n-1)B(n)X(3n+1) and high n values (n >= 5), are regarded as viable materials for photovoltaics because they feature higher stability if compared to the 3D perovskite, i.e., ABX(3), still maintaining good charge absorption and transport properties. When integrated into the actual solar cells, however, scattered, sometimes contradictory results are reported among different deposition procedures and different cations, especially for higher n resulting in not uniform morphology and mixed composition. Herein, high-dimensionality RP perovskites with n = 1, 4, 10, 20, and 40 values are systematically investigated considering the interplay between the formation of 2D domains, their distribution along the active layer, the active layer thickness, and the solar cells' performance. Given the complexity of the investigated system, combined advanced structural/morphological analyses are performed to explain solar cells' performance, finding that the 2D phase segregates at the interface with the top electrode, acting as a barrier for charge extraction, overall decreasing the short-circuit current (J(sc)). Reducing the relative amount of bulky alkylammonium cation with respect to the methylammonium, the 2D perovskite overlayer is intentionally decreased leading to a recovery of the J(sc) values, corroborating the hypothesis.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] High-Quality Ruddlesden-Popper Perovskite Film Formation for High-Performance Perovskite Solar Cells
    Liu, Pengyun
    Han, Ning
    Wang, Wei
    Ran, Ran
    Zhou, Wei
    Shao, Zongping
    ADVANCED MATERIALS, 2021, 33 (10)
  • [42] 2D/Quasi-2D Ruddlesden-Popper Perovskite: A High-Performance Photocatalyst for Hydrogen Evolution
    Fu, Hui
    Liu, Xiaolei
    Fu, Jinyu
    Wu, Yaqiang
    Zhang, Qianqian
    Wang, Zeyan
    Liu, Yuanyuan
    Zheng, Zhaoke
    Cheng, Hefeng
    Dai, Ying
    Huang, Baibiao
    Wang, Peng
    ACS CATALYSIS, 2023, 13 (22) : 14716 - 14724
  • [43] Uniaxial Expansion of the 2D Ruddlesden-Popper Perovskite Family for Improved Environmental Stability
    Spanopoulos, Ioannis
    Hadar, Ido
    Ke, Weijun
    Tu, Qing
    Chen, Michelle
    Tsai, Hsinhan
    He, Yihui
    Shekhawat, Gajendra
    Dravid, Vinayak P.
    Wasielewski, Michael R.
    Mohite, Aditya D.
    Stoumpos, Constantinos C.
    Kanatzidis, Mercouri G.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (13) : 5518 - 5534
  • [44] Photoinduced Halide Segregation in Ruddlesden-Popper 2D Mixed Halide Perovskite Films
    Cho, Junsang
    Mathew, Preethi S.
    DuBose, Jeffrey T.
    Kamat, Prashant, V
    ADVANCED MATERIALS, 2021, 33 (48)
  • [45] 2D Ruddlesden-Popper Perovskite Single Crystal Field-Effect Transistors
    Liu, Fengjing
    Wang, Liang
    Wang, Jiawei
    Wang, Feng
    Chen, Yiyi
    Zhang, Shuai
    Sun, Huijuan
    Liu, Jia
    Wang, Gongtang
    Hu, Yuanyuan
    Jiang, Chao
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (01)
  • [46] Phenylformamidinium-enabled quasi-2D Ruddlesden-Popper perovskite solar cells with improved stability
    Xingcheng Li
    Wanpei Hu
    Yanbo Shang
    Xin Yu
    Xue Wang
    Weiran Zhou
    Mingtai Wang
    Qun Luo
    Chang-Qi Ma
    Yalin Lu
    Shangfeng Yang
    Journal of Energy Chemistry, 2022, 66 (03) : 680 - 688
  • [47] Phenylformamidinium-enabled quasi-2D Ruddlesden-Popper perovskite solar cells with improved stability
    Li, Xingcheng
    Hu, Wanpei
    Shang, Yanbo
    Yu, Xin
    Wang, Xue
    Zhou, Weiran
    Wang, Mingtai
    Luo, Qun
    Ma, Chang-Qi
    Lu, Yalin
    Yang, Shangfeng
    JOURNAL OF ENERGY CHEMISTRY, 2022, 66 : 680 - 688
  • [48] Mixed bulky cations for efficient and stable Ruddlesden-Popper perovskite solar cells
    Shi, Jishan
    Jin, Xing
    Wu, Youzhi
    Shao, Ming
    APL MATERIALS, 2020, 8 (10)
  • [49] High Efficiency Perovskite Solar Cells Employing Quasi-2D Ruddlesden-Popper/Dion-Jacobson Heterojunctions
    Li, Kang
    Yue, Shengli
    Li, Xing
    Ahmad, Nafees
    Cheng, Qian
    Wang, Boxin
    Zhang, Xuning
    Li, Shilin
    Li, Yanxun
    Huang, Gaosheng
    Kang, Hui
    Yue, Tong
    Zafar, Saud Uz
    Zhou, Huiqiong
    Zhu, Lina
    Zhang, Yuan
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (21)
  • [50] Dion-Jacobson and Ruddlesden-Popper double-phase 2D perovskites for solar cells
    Fu, Ping
    Liu, Yang
    Yu, Shuwen
    Yin, Heng
    Yang, Bowen
    Ahmad, Sajjad
    Guo, Xin
    Li, Can
    NANO ENERGY, 2021, 88