Unveiling stable one-dimensional magnetic solitons in magnetic bilayers

被引:0
|
作者
Jin, Xin-Wei [1 ,2 ]
Yang, Zhan-Ying [1 ,2 ]
Liao, Zhi-Min [3 ]
Jing, Guangyin [1 ]
Yang, Wen -Li [2 ,4 ]
机构
[1] Northwest Univ, Sch Phys, Xian 710127, Peoples R China
[2] Peng Huanwu Ctr Fundamental Theory, Xian 710127, Peoples R China
[3] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[4] Northwest Univ, Sch Phys, Xian 710127, Peoples R China
关键词
SPIN-WAVES; PROPAGATION;
D O I
10.1103/PhysRevB.109.014414
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a novel model which efficiently describes the magnetization dynamics in a magnetic bilayer system. By applying a particular gauge transformation to the Landau-Lifshitz-Gilbert (LLG) equation, we successfully convert the model into an exactly integrable framework. Thus the obtained analytical solutions allow us to predict a one-dimensional magnetic soliton pair existing by tuning the thickness of the spacing layer between the two ferrimagnetic layers. The decoupling-unlocking-locking transition of soliton motion is determined at various interaction intensity. Our results have implications for the manipulation of magnetic solitons and the design of theoretical magnetic soliton-based distance detection prototype.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Quantum internal modes of solitons in a one-dimensional easy-plane antiferromagnet in a strong magnetic field
    Ivanov, BA
    Kolezhuk, AK
    [J]. PHYSICAL REVIEW B, 1997, 56 (14) : 8886 - 8893
  • [32] Solitons in one-dimensional photonic crystals
    Mayteevarunyoo, Thawatchai
    Malomed, Boris A.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2008, 25 (11) : 1854 - 1863
  • [33] Solitons in one-dimensional nonlinear lattice
    Chen, Weizhong
    [J]. Wuli Xuebao/Acta Physica Sinica, 1993, 42 (10): : 1567 - 1572
  • [34] Nonparaxial one-dimensional spatial solitons
    Blair, S
    [J]. CHAOS, 2000, 10 (03) : 570 - 583
  • [35] NUMERICAL SIMULATIONS OF ONE-DIMENSIONAL SOLITONS
    PEREIRA, NR
    SUDAN, RN
    DENAVIT, J
    [J]. PHYSICS OF FLUIDS, 1977, 20 (02) : 271 - 281
  • [36] SOLITONS IN ONE-DIMENSIONAL MOLECULAR CHAINS
    DAVYDOV, AS
    KISLUKHA, NI
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1976, 71 (09): : 1090 - 1098
  • [37] One-dimensional quadratic walking solitons
    Schiek, R
    Baek, Y
    Stegeman, GI
    Sohler, W
    [J]. OPTICS LETTERS, 1999, 24 (02) : 83 - 85
  • [38] SOLITONS IN ONE-DIMENSIONAL FERROMAGNETIC SYSTEMS
    PUSHKAROV, DI
    PUSHKAROV, KI
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1977, 81 (02): : 703 - 707
  • [39] STABILITY OF ONE-DIMENSIONAL LANGMUIR SOLITONS
    KUZNETSOV, EA
    MEZENTSEV, VK
    [J]. DOKLADY AKADEMII NAUK SSSR, 1985, 282 (05): : 1110 - 1112
  • [40] SOLITONS IN ONE-DIMENSIONAL MOLECULAR CHAINS
    DAVYDOV, AS
    KISLUKHA, NI
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1976, 75 (02): : 735 - 742