Computational Aeroacoustics for a Cold, Non-Ideally Expanded Aerospike Nozzle

被引:2
|
作者
Golliard, Thomas [1 ]
Mihaescu, Mihai [1 ]
机构
[1] KTH Royal Inst Technol, FLOW Ctr, Dept Engn Mech, S-11428 Stockholm, Sweden
来源
关键词
computational fluid dynamics (CFD); nozzle; aeroacoustics; turbine aerodynamic design; SUPERSONIC JETS; NOISE; SIMULATIONS; SCREECH; FLOW;
D O I
10.1115/1.4063877
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In supersonic aerospace applications, aerospike nozzles have been subject of growing interest. This study sheds light on the noise components of a cold jet exhausting an aerospike nozzle. Implicit large eddy simulations (ILES) are deployed to simulate the jet at a nozzle pressure ratio (NPR)=3. For far-field acoustic computation, the Ffowcs Williams-Hawkings (FWH) equation is applied. A mesh sensitivity study is performed and the jet instantaneous and time-averaged flow characteristics are analyzed. The annular shock structure displays short non-attached shock-cells and longer attached shock-cells. Downstream of the aerospike, a circular shock-cell structure is formed with long shock-cells. Two-point cross-correlations of data acquired at monitoring points located along the shear layers allow to identify upstream propagating waves associated to screech. Power spectral density at monitoring points in the annular shock-cell structure allows to identify its radial oscillation modes. Furthermore, a vortex sheet model is adapted to predict the annular shock-cells length and the BBSAN central frequency. High sound pressure levels (SPL) are detected at the determined BBSAN central frequencies. Finally, high SPL are obtained at the radial oscillation frequencies for the annular shock-cell structure.
引用
收藏
页数:11
相关论文
共 50 条