VEGETATION FUEL TYPE CLASSIFICATION USING OPTIMISED SYNERGY OF SENTINEL DATA AND TEXTURE FEATURE

被引:1
|
作者
Mohammadpour, Pegah [1 ,2 ]
Xavier Viegas, Domingos [1 ]
Chuvieco, Emilio [2 ]
Pereira, Alcides [3 ]
Mantas, Vasco [4 ,5 ]
机构
[1] Univ Coimbra, Dept Mech Engn, ADAI, Rua Luis Reis Santos,Polo 2, P-3030788 Coimbra, Portugal
[2] Univ Alcala, Dept Geol Geog & Environm, Environm Remote Sensing Res Grp, Colegios 2, Alcala De Henares 28801, Spain
[3] Univ Coimbra, Dept Earth Sci, Ctr Earth & Space Res, Coimbra, Portugal
[4] Univ Coimbra, Ctr Earth & Space Res, Coimbra, Portugal
[5] Univ Coimbra, Marine & Environm Sci Ctr, Dept Earth Sci, Coimbra, Portugal
关键词
feature selection; fuel type; GLCM texture; random forest; Sentinel data;
D O I
10.1109/IGARSS52108.2023.10281659
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper aims to map vegetation fuel types using a combination of remote sensing data in a complex and diverse plant cover of central Portugal. This study employs Sentinel-1 (S1) and Sentinel-2 (S2) bands, digital elevation model (DEM), and vegetation indices (VIs). Gray-level co-occurrence matrix (GLCM) texture features were generated for the first three principal components (PCs), after applying principal component analysis (PCA) on the S2A spectral bands. First, the fuel type classes based on the FirEUrisk Hierarchical Multipurpose Fuel Classification System (FirEUrisk-HMFCS) were established, then the Random Forest (RF) classifier was employed. Moreover, the feature selection method was used to improve classifier performance. The proposed methodology increased the overall accuracy (OA) of the classification up to 91.89% due to the consideration of the feature selection in the synergy of multisource data, and the role of texture feature data.
引用
收藏
页码:3098 / 3101
页数:4
相关论文
共 50 条
  • [41] Texture classification for visual data using transfer learning
    Goyal, Vinat
    Sharma, Sanjeev
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (16) : 24841 - 24864
  • [42] Texture classification for visual data using transfer learning
    Vinat Goyal
    Sanjeev Sharma
    Multimedia Tools and Applications, 2023, 82 : 24841 - 24864
  • [43] Vegetation coverage classification using texture analysis on high resolution satellite images
    Abadi, Mohamed
    Grandchamp, Enguerran
    TRAITEMENT DU SIGNAL, 2009, 26 (02) : 175 - 185
  • [44] CLASSIFICATION OF FOREST VEGETATION TYPE USING FUSED NDVI TIME SERIES DATA BASED ON STNLFFM
    Wang, Jialin
    Cai, Xiaobin
    Chen, Xiaoling
    Zhang, Zhan
    Tang, LinLing
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6047 - 6050
  • [45] The classification of submerged vegetation using hyperspectral MIVIS data
    Ciraolo, Giuseppe
    Cox, Eleanor
    La Loggia, Goffredo
    Maltese, Antonino
    ANNALS OF GEOPHYSICS, 2006, 49 (01) : 287 - 294
  • [46] Vegetation Classification Using Seasonal Variation MODIS Data
    Choi, Hyun-Ah
    Lee, Woo-Kyun
    Son, Yowhan
    Kojima, Toshiharu
    Muraoka, Hiroyuki
    KOREAN JOURNAL OF REMOTE SENSING, 2010, 26 (06) : 665 - 673
  • [47] Classification of Mangroves Vegetation Species Using Texture Analysis on RapidEye Satellite Imagery
    Roslani, M. A.
    Mustapha, M. A.
    Lihan, T.
    Juliana, W. A. Wan
    2013 UKM FST POSTGRADUATE COLLOQUIUM, 2013, 1571 : 480 - 486
  • [48] Vegetation classification of TM imagery using ancillary data
    Huo, H., 2001, Beijing Forestry University (23):
  • [49] Data stream classification in dynamic feature space using feature mapping
    Sajedi, Reza
    Razzazi, Mohammadreza
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (09): : 12043 - 12061
  • [50] Vegetation classification in a subtropical region with Sentinel-2 time series data and deep learning
    Zhang, Ming
    Li, Dengqiu
    Li, Guiying
    Lu, Dengsheng
    GEO-SPATIAL INFORMATION SCIENCE, 2025, 28 (01) : 145 - 163