HED-FL: A hierarchical, energy efficient, and dynamic approach for edge Federated Learning

被引:16
|
作者
De Rango, Floriano [1 ]
Guerrieri, Antonio [2 ]
Raimondo, Pierfrancesco [1 ]
Spezzano, Giandomenico [2 ]
机构
[1] Univ Calabria, DIMES Dept, Arcavacata Di Rende, CS, Italy
[2] Natl Res Council Italy, Inst high performance Comp & networking, ICAR CNR, Arcavacata Di Rende, CS, Italy
关键词
Internet of Things; Federated Learning; Edge Intelligence; Edge AI; Hierarchical FL; Neural networks; Machine learning;
D O I
10.1016/j.pmcj.2023.101804
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The increasing data produced by IoT devices and the need to harness intelligence in our environments impose the shift of computing and intelligence at the edge, leading to a novel computing paradigm called Edge Intelligence/Edge AI. This paradigm combines Artificial Intelligence and Edge Computing, enables the deployment of machine learning algorithms to the edge, where data is generated, and is able to overcome the drawbacks of a centralized approach based on the cloud (e.g., performance bottleneck, poor scalability, and single point of failure). Edge AI supports the distributed Federated Learning (FL) model that maintains local training data at the end devices and shares only globally learned model parameters in the cloud. This paper proposes a novel, energy -efficient, and dynamic FL-based approach considering a hierarchical edge FL architecture called HED-FL, which supports a sustainable learning paradigm using model parameters aggregation at different layers and considering adaptive learning rounds at the edge to save energy but still preserving the learning model's accuracy. Performance evaluations of the proposed approach have also been led out considering model accuracy, loss, and energy consumption.& COPY; 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Energy-Efficient Federated Edge Learning with Joint Communication and Computation Design
    Mo X.
    Xu J.
    1600, Posts and Telecom Press Co Ltd (06): : 110 - 124
  • [42] Efficient Wireless Traffic Prediction at the Edge: A Federated Meta-Learning Approach
    Zhang, Liang
    Zhang, Chuanting
    Shihada, Basem
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (07) : 1573 - 1577
  • [43] Dynamic Scheduling for Over-the-Air Federated Edge Learning With Energy Constraints
    Sun, Yuxuan
    Zhou, Sheng
    Niu, Zhisheng
    Gunduz, Deniz
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (01) : 227 - 242
  • [44] Latency Constrained Energy-Efficient Underwater Dynamic Federated Learning
    Xia, Zhaoyue
    Du, Jun
    Jiang, Chunxiao
    Han, Zhu
    Ren, Yong
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024,
  • [45] A Communication-Efficient Hierarchical Federated Learning Framework via Shaping Data Distribution at Edge
    Deng, Yongheng
    Lyu, Feng
    Xia, Tengxi
    Zhou, Yuezhi
    Zhang, Yaoxue
    Ren, Ju
    Yang, Yuanyuan
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 32 (03) : 2600 - 2615
  • [46] Cost-efficient Hierarchical Federated Edge Learning for Satellite-terrestrial Internet of Things
    Pei, Xintong
    Zhang, Zhenjiang
    Zhang, Yaochen
    Mobile Networks and Applications, 29 (03): : 922 - 934
  • [47] Cost-efficient Hierarchical Federated Edge Learning for Satellite-terrestrial Internet of Things
    Pei, Xintong
    Zhang, Zhenjiang
    Zhang, Yaochen
    MOBILE NETWORKS & APPLICATIONS, 2024, 29 (03): : 922 - 934
  • [48] Min-Max Cost Optimization for Efficient Hierarchical Federated Learning in Wireless Edge Networks
    Feng, Jie
    Liu, Lei
    Pei, Qingqi
    Li, Keqin
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (11) : 2687 - 2700
  • [49] Dynamic Edge Association and Resource Allocation in Self-Organizing Hierarchical Federated Learning Networks
    Lim, Wei Yang Bryan
    Ng, Jer Shyuan
    Xiong, Zehui
    Niyato, Dusit
    Miao, Chunyan
    Kim, Dong In
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3640 - 3653
  • [50] Dynamic Resource Management for Federated Edge Learning With Imperfect CSI: A Deep Reinforcement Learning Approach
    Zhou, Sheng
    Feng, Li
    Mei, Muyu
    Yao, Mingwu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (18): : 30400 - 30412