Bayesian Inference and Global Sensitivity Analysis for Ambient Solar Wind Prediction

被引:5
|
作者
Issan, Opal [1 ]
Riley, Pete [2 ]
Camporeale, Enrico [3 ,4 ]
Kramer, Boris [1 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[2] Predict Sci Inc, San Diego, CA USA
[3] Univ Colorado Boulder, CIRES, Boulder, CO USA
[4] NOAA Space Weather Predict Ctr, Boulder, CO USA
基金
美国国家科学基金会;
关键词
ambient solar wind; uncertainty quantification; sensitivity analysis; Bayesian inference; Monte Carlo; CORONAL MASS EJECTIONS; SOURCE SURFACE; MODEL; INTERPLANETARY; FIELD; PROPAGATION; STREAMS; SPEED; SUN;
D O I
10.1029/2023SW003555
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The ambient solar wind plays a significant role in propagating interplanetary coronal mass ejections and is an important driver of space weather geomagnetic storms. A computationally efficient and widely used method to predict the ambient solar wind radial velocity near Earth involves coupling three models: Potential Field Source Surface, Wang-Sheeley-Arge (WSA), and Heliospheric Upwind eXtrapolation. However, the model chain has 11 uncertain parameters that are mainly non-physical due to empirical relations and simplified physics assumptions. We, therefore, propose a comprehensive uncertainty quantification (UQ) framework that is able to successfully quantify and reduce parametric uncertainties in the model chain. The UQ framework utilizes variance-based global sensitivity analysis followed by Bayesian inference via Markov chain Monte Carlo to learn the posterior densities of the most influential parameters. The sensitivity analysis results indicate that the five most influential parameters are all WSA parameters. Additionally, we show that the posterior densities of such influential parameters vary greatly from one Carrington rotation to the next. The influential parameters are trying to overcompensate for the missing physics in the model chain, highlighting the need to enhance the robustness of the model chain to the choice of WSA parameters. The ensemble predictions generated from the learned posterior densities significantly reduce the uncertainty in solar wind velocity predictions near Earth.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Upstream Solar Wind Prediction up to Mars by an Operational Solar Wind Prediction System
    Wang, Jingjing
    Shi, Yurong
    Luo, Bingxian
    Liu, Siqing
    Kong, Linggao
    Ma, Jijie
    Li, Wenya
    Tang, Binbin
    Zhang, Aibing
    Li, Lei
    Shi, Liqin
    Zhong, Qiuzhen
    Chen, Yanhong
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2023, 21 (01):
  • [42] Wind Speed and Solar Irradiance Prediction Using Advanced Neuro-Fuzzy Inference System
    Shihabudheen, K., V
    Pillai, G. N.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 250 - 256
  • [43] On Sensitivity of Inference in Bayesian MSF-MGARCH Models
    Osiewalski, Jacek
    Pajor, Anna
    CENTRAL EUROPEAN JOURNAL OF ECONOMIC MODELLING AND ECONOMETRICS, 2019, 11 (03): : 173 - 197
  • [44] Unifying the validation of ambient solar wind models
    Reiss, Martin A.
    Muglach, Karin
    Mullinix, Richard
    Kuznetsova, Maria M.
    Wiegand, Chiu
    Temmer, Manuela
    Arge, Charles N.
    Dasso, Sergio
    Fung, Shing F.
    Gonzalez-Aviles, Jose Juan
    Gonzi, Siegfried
    Jian, Lan
    Macneice, Peter
    Mostl, Christian
    Owens, Mathew
    Perri, Barbara
    Pinto, Rui F.
    Rastatter, Lutz
    Riley, Pete
    Samara, Evangelia
    ADVANCES IN SPACE RESEARCH, 2023, 72 (12) : 5275 - 5286
  • [45] Assessing the Quality of Models of the Ambient Solar Wind
    MacNeice, P.
    Jian, L. K.
    Antiochos, S. K.
    Arge, C. N.
    Bussy-Virat, C. D.
    DeRosa, M. L.
    Jackson, B. V.
    Linker, J. A.
    Mikic, Z.
    Owens, M. J.
    Ridley, A. J.
    Riley, P.
    Savani, N.
    Sokolov, I.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2018, 16 (11): : 1644 - 1667
  • [46] AN MCMC APPROACH TO EMPIRICAL BAYES INFERENCE AND BAYESIAN SENSITIVITY ANALYSIS VIA EMPIRICAL PROCESSES
    Doss, Hani
    Park, Yeonhee
    ANNALS OF STATISTICS, 2018, 46 (04): : 1630 - 1663
  • [47] Statistical downscaling with Bayesian inference: Estimating global solar radiation from reanalysis and limited observed data
    Iizumi, Toshichika
    Nishimori, Motoki
    Yokozawa, Masayuki
    Kotera, Akihiko
    Nguyen Duy Khang
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2012, 32 (03) : 464 - 480
  • [48] Bayesian regression modeling and inference of energy efficiency data: the effect of collinearity and sensitivity analysis
    Al-Essa, Laila A.
    Ebrahim, Endris Assen
    Mergiaw, Yusuf Ali
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [49] Global sensitivity analysis: A Bayesian learning based polynomial chaos approach
    Bhattacharyya, Biswarup
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 415
  • [50] HYPERDIFFERENTIAL SENSITIVITY ANALYSIS IN THE CONTEXT OF BAYESIAN INFERENCE APPLIED TO ICE-SHEET PROBLEMS
    Reese, William
    Hart, Joseph
    Waanders, Bart van Bloemen
    Perego, Mauro
    Jakeman, John
    Saibaba, Arvind K.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2024, 14 (03) : 1 - 20