Unsupervised 3D Point Cloud Representation Learning by Triangle Constrained Contrast for Autonomous Driving

被引:4
|
作者
Pang, Bo [1 ]
Xia, Hongchi [1 ]
Lu, Cewu [1 ,2 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Qing Yuan Res Inst, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, MoE Key Lab Artificial Intelligence, AI Inst, Shanghai, Peoples R China
[4] Shanghai Qi Zhi Inst, Shanghai, Peoples R China
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR | 2023年
关键词
D O I
10.1109/CVPR52729.2023.00506
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the difficulty of annotating the 3D LiDAR data of autonomous driving, an efficient unsupervised 3D representation learning method is important. In this paper, we design the Triangle Constrained Contrast (TriCC) framework tailored for autonomous driving scenes which learns 3D unsupervised representations through both the multimodal information and dynamic of temporal sequences. We treat one camera image and two LiDAR point clouds with different timestamps as a triplet. And our key design is the consistent constraint that automatically finds matching relationships among the triplet through "self-cycle" and learns representations from it. With the matching relations across the temporal dimension and modalities, we can further conduct a triplet contrast to improve learning efficiency. To the best of our knowledge, TriCC is the first framework that unifies both the temporal and multimodal semantics, which means it utilizes almost all the information in autonomous driving scenes. And compared with previous contrastive methods, it can automatically dig out contrasting pairs with higher difficulty, instead of relying on handcrafted ones. Extensive experiments are conducted with Minkowski-UNet and VoxelNet on several semantic segmentation and 3D detection datasets. Results show that TriCC learns effective representations with much fewer training iterations and improves the SOTA results greatly on all the downstream tasks. Code and models can be found at https://bopang1996.github.io/.
引用
收藏
页码:5229 / 5239
页数:11
相关论文
共 50 条
  • [41] LIGHTNINGNET : FAST AND ACCURATE SEMANTIC SEGMENTATION FOR AUTONOMOUS DRIVING BASED ON 3D LIDAR POINT CLOUD
    Yang, Kaihong
    Bi, Sheng
    Dong, Min
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [42] Quadratic Terms Based Point-to-Surface 3D Representation for Deep Learning of Point Cloud
    Sun, Tiecheng
    Liu, Guanghui
    Li, Ru
    Liu, Shuaicheng
    Zhu, Shuyuan
    Zeng, Bing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 2705 - 2718
  • [43] 3D Lidar Point Cloud Segmentation for Automated Driving
    Abbasi, Rashid
    Bashir, Ali Kashif
    Rehman, Amjad
    Ge, Yuan
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2025, 17 (01) : 8 - 29
  • [44] 3D Point Cloud Labeling Tool for Driving Automatically
    Li, MingHui
    Zhang, Yanning
    2020 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2020, : 1666 - 1672
  • [45] Unsupervised Point Cloud Representation Learning by Clustering and Neural Rendering
    Mei, Guofeng
    Saltori, Cristiano
    Ricci, Elisa
    Sebe, Nicu
    Wu, Qiang
    Zhang, Jian
    Poiesi, Fabio
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (08) : 3251 - 3269
  • [46] AN UNSUPERVISED OUTLIER DETECTION METHOD FOR 3D POINT CLOUD DATA
    Dey, Emon Kumar
    Awrangjeb, Mohammad
    Stantic, Bela
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2495 - 2498
  • [47] 3D Point Cloud Enhancement using Unsupervised Anomaly Detection
    Regaya, Yousra
    Fadli, Fodil
    Amira, Abbes
    2019 5TH IEEE INTERNATIONAL SYMPOSIUM ON SYSTEMS ENGINEERING (IEEE ISSE 2019), 2019,
  • [48] Bioinspired point cloud representation: 3D object tracking
    Sergio Orts-Escolano
    Jose Garcia-Rodriguez
    Miguel Cazorla
    Vicente Morell
    Jorge Azorin
    Marcelo Saval
    Alberto Garcia-Garcia
    Victor Villena
    Neural Computing and Applications, 2018, 29 : 663 - 672
  • [49] Bioinspired point cloud representation: 3D object tracking
    Orts-Escolano, Sergio
    Garcia-Rodriguez, Jose
    Cazorla, Miguel
    Morell, Vicente
    Azorin, Jorge
    Saval, Marcelo
    Garcia-Garcia, Alberto
    Villena, Victor
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (09): : 663 - 672
  • [50] F-3DNet: Extracting inner order of point cloud for 3D object detection in autonomous driving
    Xu, Fenglei
    Zhao, Haokai
    Wu, Yifei
    Tao, Chongben
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 8499 - 8516