Mimicking superinfection exclusion disrupts alphavirus infection and transmission in the yellow fever mosquito Aedes aegypti

被引:3
|
作者
Reitmayer, Christine M. [1 ]
Levitt, Emily [1 ]
Basu, Sanjay [1 ]
Atkinson, Barry [1 ]
Fragkoudis, Rennos [1 ,3 ]
Merits, Andres [2 ]
Lumley, Sarah [1 ]
Larner, Will [1 ]
Diaz, Adriana V. [1 ]
Rooney, Sara [1 ]
Thomas, Callum J. E. [1 ]
von Wyschetzki, Katharina [1 ]
Rausalu, Kai [2 ]
Alphey, Luke [1 ,4 ]
机构
[1] Pirbright Inst, Arthropod Genet, Woking GU24 0NF, Surrey, England
[2] Univ Tartu, Inst Technol, Appl Virol, EE-50411 Tartu, Estonia
[3] Univ Edinburgh, Edinburgh Genome Foundry, Edinburgh EH9 3BF, Midlothian, Scotland
[4] Univ York, Dept Biol, York YO10 5DD, N Yorkshire, England
基金
英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
superinfection exclusion; alphaviruses; nsP2; protease; arbovirus transmission; SINDBIS-VIRUS; RNA-SYNTHESIS; MINUS-STRAND; NONSTRUCTURAL PROTEIN-2; NUCLEAR-LOCALIZATION; REPLICATION; INTERFERENCE; ALBOPICTUS; NSP2; CHIKUNGUNYA;
D O I
10.1073/pnas.2303080120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiple viruses, including pathogenic viruses, bacteriophages, and even plant viruses, cause a phenomenon termed superinfection exclusion whereby a currently infected cell is resistant to secondary infection by the same or a closely related virus. In alphaviruses, this process is thought to be mediated, at least in part, by the viral protease (nsP2) which is responsible for processing the nonstructural polyproteins (P123 and P1234) into individual proteins (nsP1-nsP4), forming the viral replication complex. Taking a synthetic biology approach, we mimicked this naturally occurring phenomenon by generating a superinfection exclusion-like state in Aedes aegypti mosquitoes, rendering them refractory to alphavirus infection. By artificially expressing Sindbis virus (SINV) and chikungunya virus (CHIKV) nsP2 in mosquito cells and transgenic mosquitoes, we demonstrated a reduction in both SINV and CHIKV viral replication rates in cells following viral infection as well as reduced infection prevalence, viral titers, and transmission potential in mosquitoes.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Incursion pathways of theAsiantiger mosquito (Aedes albopictus) intoAustraliacontrast sharply with those of the yellow fever mosquito (Aedes aegypti)
    Schmidt, Thomas L.
    Chung, Jessica
    van Rooyen, Anthony R.
    Sly, Angus
    Weeks, Andrew R.
    Hoffmann, Ary A.
    PEST MANAGEMENT SCIENCE, 2020, 76 (12) : 4202 - 4209
  • [43] Characterization of Aedes Dredd:: A novel initiator caspase from the yellow fever mosquito, Aedes aegypti
    Cooper, Dawn M.
    Pio, Frederic
    Thi, Emily P.
    Theilmann, Dave
    Lowenberger, Carl
    INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2007, 37 (06) : 559 - 569
  • [44] Gene coexpression network during ontogeny in the yellow fever mosquito, Aedes aegypti
    Zhinan Lin
    Yuqi Huang
    Sihan Liu
    Qiwen Huang
    Biliang Zhang
    Tianpeng Wang
    Ziding Zhang
    Xiaowei Zhu
    Chenghong Liao
    Qian Han
    BMC Genomics, 24
  • [45] Aedes Dronc:: a novel ecdysone-inducible caspase in the yellow fever mosquito, Aedes aegypti
    Cooper, D. M.
    Thi, E. P.
    Chamberlain, C. M.
    Pio, F.
    Lowenberger, C.
    INSECT MOLECULAR BIOLOGY, 2007, 16 (05) : 563 - 572
  • [46] An Integrated Linkage, Chromosome, and Genome Map for the Yellow Fever Mosquito Aedes aegypti
    Timoshevskiy, Vladimir A.
    Severson, David W.
    deBruyn, Becky S.
    Black, William C.
    Sharakhov, Igor V.
    Sharakhova, Maria V.
    PLOS NEGLECTED TROPICAL DISEASES, 2013, 7 (02):
  • [47] The effect of bacterial challenge on ferritin regulation in the yellow fever mosquito, Aedes aegypti
    Geiser, Dawn L.
    Zhou, Guoli
    Mayo, Jonathan J.
    Winzerling, Joy J.
    INSECT SCIENCE, 2013, 20 (05) : 601 - 619
  • [48] Engineering a self-eliminating transgene in the yellow fever mosquito, Aedes aegypti
    Chae, Keun
    Dawson, Chanell
    Valentin, Collin
    Contreras, Bryan
    Zapletal, Josef
    Myles, Kevin M.
    Adelman, Zach N.
    PNAS NEXUS, 2022, 1 (02):
  • [49] The current and future distribution of the yellow fever mosquito (Aedes aegypti) on Madeira Island
    Santos, Jose Mauricio
    Capinha, Cesar
    Rocha, Jorge
    Sousa, Carla Alexandra
    PLOS NEGLECTED TROPICAL DISEASES, 2022, 16 (09):
  • [50] Demonstration of Photodynamic Molecules as Larvicides towards the Yellow Fever Mosquito Aedes aegypti
    Meier, Cole
    Rouhier, Matthew
    FASEB JOURNAL, 2019, 33