Fabrication and characterization of 3D printing biocompatible crocin-loaded chitosan/collagen/hydroxyapatite-based scaffolds for bone tissue engineering applications

被引:11
|
作者
Jirofti, Nafiseh [1 ,2 ,3 ,7 ]
Hashemi, Maryam [4 ,5 ]
Moradi, Ali [1 ,2 ,7 ]
Kalalinia, Fatemeh [2 ,4 ,6 ]
机构
[1] Mashhad Univ Med Sci, Ghaem Hosp, Orthoped Res Ctr, Dept Orthoped Surg, Mashhad, Iran
[2] Mashhad Univ Med Sci, Ghaem Hosp, Bone & Joint Res Lab, Mashhad, Iran
[3] Mashhad Univ Med Sci, Pharmaceut Technol Inst, Biotechnol Res Ctr, Mashhad, Iran
[4] Mashhad Univ Med Sci, Pharmaceut Technol Inst, Nanotechnol Res Ctr, Mashhad, Iran
[5] Mashhad Univ Med Sci, Sch Pharm, Dept Pharmaceut Biotechnol, Mashhad, Iran
[6] Sch Pharm, Dept Pharmaceut Biotechnol, Vakilabad Blvd,Univ Campus, Mashhad 9188617871, Iran
[7] Mashhad Univ Med Sci, Ghaem Hosp, Orthoped Res Ctr, Dept Orthoped Surg, POB 91388-13944, Mashhad, Iran
关键词
Crocin; 3D printing; Hydroxyapatite; Scaffold; Bone tissue engineering; WOUND-HEALING EFFICIENCY; NANOFIBERS; MODEL;
D O I
10.1016/j.ijbiomac.2023.126279
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Introduction: Crocin (Cro) is a bioactive biomaterial with properties that promote osteoconduction, osteoinduction, and osteogenic differentiation, making it an ideal candidate for developing mechanically enhanced scaffolds for bone tissue engineering (BTE). Present study focused on a 3D printing matrix loaded with Cro and featuring a composite structure consisting of Chitosan (CH), collagen (Col), and hydroxyapatite (HA). Method: The scaffolds' structural properties were analyzed using FESEM, and FTIR DSC, while the degradation rate, swelling ratio, cell viability were examined to determine their in vitro performance. Additionally, the scaffolds' mechanical properties were calculated by examining their force, stress, elongation, and Young's modulus. Results: The CH/Col/nHA scaffolds demonstrated interconnected porous structures. The cell study results indicated that the Cro-loaded in scaffolds cause to reduce the toxicity of Cro. Biocompatibility was confirmed through degradation rate, swelling ratio parameters, and contact angle measurements for all structures. The addition of Cro showed a significant impact on the strength of the fabricated scaffolds. By loading 25 and 50 mu l of Cro, the Young's modulus improved by 71 % and 74 %, respectively, compared to the free drug scaffold. Conclusion: The obtained results indicated that the 3D printing crocin-loaded scaffolds based chitosan/collagen/ hydroxyapatite structure can be introduced as a promising candidate for BTE applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] 3D printing of Osage orange extract/Chitosan scaffolds for soft tissue engineering
    Saatcioglu, Elif
    Koyun, Muge
    Ulag, Songul
    Sahin, Ali
    Yilmaz, Betul Karademir
    Aksu, Burak
    Gunduz, Oguzhan
    FOOD HYDROCOLLOIDS FOR HEALTH, 2021, 1
  • [42] Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering
    Wright, L. D.
    Young, R. T.
    Andric, T.
    Freeman, J. W.
    BIOMEDICAL MATERIALS, 2010, 5 (05)
  • [43] Fabrication and characterization of hybrid PCL/PEG 3D scaffolds for potential tissue engineering applications
    Hoque, M. Enamul
    Meng, Terrence Teh Hooi
    Chuan, Y. Leng
    Chowdhury, Moniruddin
    Prasad, R. G. S. V.
    MATERIALS LETTERS, 2014, 131 : 255 - 258
  • [44] Development of Chitosan-Hydroxyapatite-Fibrinogen 3D Scaffolds For Bone Tissue Regeneration
    Turkmen, Ayten Kubra
    Cavalu, Simona
    Goller, Gultekin
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2016, 52 (01) : 34 - 41
  • [45] Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering
    Liu, C. Z.
    Xia, Z. D.
    Han, Z. W.
    Hulley, P. A.
    Triffitt, J. T.
    Czernuszka, J. T.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2008, 85B (02) : 519 - 528
  • [46] Biodegradable Scaffolds for Urethra Tissue Engineering Based on 3D Printing
    Xu, Yifan
    Meng, Qinghua
    Jin, Xin
    Liu, Feng
    Yu, Jianjun
    ACS APPLIED BIO MATERIALS, 2020, 3 (04): : 2007 - 2016
  • [47] 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review
    Tamo, Arnaud Kamdem
    Djouonkep, Lesly Dasilva Wandji
    Selabi, Naomie Beolle Songwe
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 270
  • [48] Fabrication and characterization of apigenin-loaded chitosan/gelatin membranes for bone tissue engineering applications
    Bozorgi, Azam
    Khazaei, Mozafar
    Bozorgi, Maryam
    Jamalpoor, Zahra
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2023, 38 (02) : 142 - 157
  • [49] 3D printing of chitosan/ poly(vinyl alcohol) hydrogel containing synthesized hydroxyapatite scaffolds for hard-tissue engineering
    Ergul, Necdet Mekki
    Unal, Semra
    Kartal, Ilyas
    Kalkandelen, Cevriye
    Ekren, Nazmi
    Kilic, Osman
    Chi-Chang, Lin
    Gunduz, Oguzhan
    POLYMER TESTING, 2019, 79
  • [50] 3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering
    Cestari, Francesca
    Petretta, Mauro
    Yang, Yuejiao
    Motta, Antonella
    Grigolo, Brunella
    Sglavo, Vincenzo M.
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2021, 29