Salt and osmotic stress can improve the editing efficiency of CRISPR/Cas9- mediated genome editing system in potato

被引:3
|
作者
Ye, Mingwang [1 ,2 ,3 ]
Yao, Mengfan [1 ,2 ,3 ]
Li, Canhui [3 ,4 ]
Gong, Ming [1 ,2 ,3 ,5 ]
机构
[1] Yunnan Normal Univ, Sch Life Sci, Kunming, Yunnan, Peoples R China
[2] Yunnan Normal Univ, Engn Res Ctr Sustainable Dev & Utilizat Biomass En, Minist Educ, Kunming, Yunnan, Peoples R China
[3] Yunnan Normal Univ, Yunnan Key Lab Potato Biol, Kunming, Yunnan, Peoples R China
[4] Yunnan Normal Univ, Joint Acad Potato Sci, Kunming, Yunnan, Peoples R China
[5] Yunnan Normal Univ, Key Lab Biomass Energy & Environm Biotechnol Yunna, Kunming, Yunnan, Peoples R China
来源
PEERJ | 2023年 / 11卷
基金
中国国家自然科学基金;
关键词
Genome editing efficiency; CRISPR; Cas9; Salt and osmotic stress; Potato; A; rhizogenes; AGROBACTERIUM-RHIZOGENES; TARGETED MUTAGENESIS; PLANTS;
D O I
10.7717/peerj.15771
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR/Cas9-mediated genome editing technology has been widely used for the study of gene function in crops, but the differences between species have led to widely varying genome editing efficiencies. The present study utilized a potato hairy root genetic transformation system and incorporated a rapid assay with GFP as a screening marker. The results clearly demonstrated that salt and osmotic stress induced by NaCl (10 to 50 mM) and mannitol (50 to 200 mM) treatments significantly increased the positive rates of genetic transformation mediated by A. rhizogenes and the editing efficiency of the CRISPR/Cas9-mediated genome editing system in potato. However, it was observed that the regeneration of potato roots was partially inhibited as a result. The analysis of CRISPR/Cas9-mediated mutation types revealed that chimeras accounted for the largest proportion, ranging from 62.50% to 100%. Moreover, the application of salt and osmotic stress resulted in an increased probability of null mutations in potato. Notably, the highest rate of null mutations, reaching 37.5%, was observed at a NaCl concentration of 10 mM. Three potential off-target sites were sequenced and no off-targeting was found. In conclusion, the application of appropriate salt and osmotic stress significantly improved the editing efficiency of the CRISPR/Cas9-mediated genome editing system in potato, with no observed off-target effects. However, there was a trade-off as the regeneration of potato roots was partially inhibited. Overall, these findings present a new and convenient approach to enhance the genome editing efficiency of the CRISPR/Cas9-mediated gene editing system in potato.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Potential pitfalls of CRISPR/Cas9-mediated genome editing
    Peng, Rongxue
    Lin, Guigao
    Li, Jinming
    FEBS JOURNAL, 2016, 283 (07) : 1218 - 1231
  • [22] CRISPR–Cas9-mediated genome editing in apple and grapevine
    Yuriko Osakabe
    Zhenchang Liang
    Chong Ren
    Chikako Nishitani
    Keishi Osakabe
    Masato Wada
    Sadao Komori
    Mickael Malnoy
    Riccardo Velasco
    Michele Poli
    Min-Hee Jung
    Ok-Jae Koo
    Roberto Viola
    Chidananda Nagamangala Kanchiswamy
    Nature Protocols, 2018, 13 : 2844 - 2863
  • [23] CRISPR/Cas9-mediated genome editing in Hevea brasiliensis
    Dai, Xuemei
    Yang, Xianfeng
    Wang, Chun
    Fan, Yueting
    Xin, Shichao
    Hua, Yuwei
    Wang, Kejian
    Huang, Huasun
    INDUSTRIAL CROPS AND PRODUCTS, 2021, 164
  • [24] Temperature effect on CRISPR-Cas9 mediated genome editing
    Xiang, Guanghai
    Zhang, Xingying
    An, Chenrui
    Cheng, Chen
    Wang, Haoyi
    JOURNAL OF GENETICS AND GENOMICS, 2017, 44 (04) : 199 - 205
  • [25] CRISPR-Cas9 MEDIATED GENOME EDITING IN ESCHERICHIA COLI
    Al-Wawi, M. Z.
    Hassan, R. M.
    Mohamed, M. E.
    Khan, M. F.
    Magaogao, M.
    Hossain, A.
    INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH, 2019, 10 (07): : 3373 - 3377
  • [26] Establishment of CRISPR/Cas9 system with multiple guide RNAs for potato genome editing
    Abeuova, L. S.
    Manabayeva, S. A.
    JOURNAL OF BIOTECHNOLOGY, 2019, 305 : S20 - S21
  • [27] Temperature effect on CRISPR-Cas9 mediated genome editing
    Guanghai Xiang
    Xingying Zhang
    Chenrui An
    Chen Cheng
    Haoyi Wang
    JournalofGeneticsandGenomics, 2017, 44 (04) : 199 - 205
  • [28] CRISPR/Cas9-Mediated Genome Editing in Cancer Therapy
    Ding, Shuai
    Liu, Jinfeng
    Han, Xin
    Tang, Mengfan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (22)
  • [29] CRISPR/Cas9-mediated genome editing in nonhuman primates
    Kang, Yu
    Chu, Chu
    Wang, Fang
    Niu, Yuyu
    DISEASE MODELS & MECHANISMS, 2019, 12 (10)
  • [30] Potato genome editing directed by CRISPR-Cas9 ribonucleoprotein complexes
    Khromov, Andrey V.
    Makhotenko, Antonida V.
    Kalinina, Nataila O.
    Snigir, Ekaterina A.
    Makarova, Svetlana S.
    Makarov, Valentin V.
    Suprunova, Tatyana P.
    Taliansky, Michael E.
    JOURNAL OF BIOTECHNOLOGY, 2018, 280 : S87 - S87