Monitoring Student Progress for Learning Process-Consistent Knowledge Tracing

被引:7
|
作者
Shen, Shuanghong [1 ,2 ,3 ]
Chen, Enhong [1 ,2 ,3 ]
Liu, Qi [1 ,2 ,3 ,4 ]
Huang, Zhenya [1 ,2 ,3 ]
Huang, Wei [1 ,2 ,3 ]
Yin, Yu [1 ,2 ,3 ]
Su, Yu [5 ,6 ]
Wang, Shijin [7 ,8 ]
机构
[1] Univ Sci & Technol China, Sch Data Sci, Anhui Prov Key Lab Big Data Anal & Applicat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Comp Sci & Techonol, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, State Key Lab Cognit Intelligence, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Inst Artificial Intelligence, Hefei Comprehens Natl Sci Ctr, Hefei 230026, Anhui, Peoples R China
[5] Hefei Normal Univ, Sch Comp Sci & Technol, Hefei 230601, Anhui, Peoples R China
[6] Hefei Normal Univ, Inst Artificial Intelligence, Hefei Comprehens Natl Sci Ctr, Hefei 230601, Anhui, Peoples R China
[7] iFLYTEK Co Ltd, iFLYTEK AI Res Cent China, Hefei 230088, Anhui, Peoples R China
[8] iFLYTEK Co Ltd, State Key Lab Cognit Intelligence, Hefei 230088, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Educational data mining; knowledge tracing; student progress; learning process; learning gain; forgetting effect;
D O I
10.1109/TKDE.2022.3221985
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge tracing (KT) is the task of tracing students' evolving knowledge state during learning, which has improved the learning efficiency. To facilitate KT's development, most existing methods pursue high accuracy of student performance prediction but neglect the consistency between students' dynamic knowledge state with their learning process. Moreover, they focus on learning outcomes at a single learning interaction, while student progress at continuous learning interactions is more instructive. In this paper, we explore a new paradigm for the KT task and propose a novel model named Learning Process-consistent Knowledge Tracing (LPKT), which captures the evolution of students' knowledge state through monitoring their learning progress. Specifically, we utilize both the positive effect of the learning gain and the negative effect of forgetting in learning to calculate student progress in continuous learning interactions. Then, considering that the rate of progress is student-specific, we extend LPKT to LPKT-S by explicitly distinguishing the individual progress rate of each student. Extensive experimental results on three public datasets demonstrate that LPKT and LPKT-S could obtain more appropriate knowledge states in line with the learning process. Moreover, LPKT and LPKT-S outperform state-of-the-art KT methods on student performance prediction. Our work indicates a promising future research direction for KT, which is highly interpretable and accurate.
引用
收藏
页码:8213 / 8227
页数:15
相关论文
共 50 条
  • [31] Progress of data-driven and knowledge-driven process monitoring and fault diagnosis for industry process
    Liu, Qiang
    Chai, Tian-You
    Qin, S-Joe
    Zhao, Li-Jie
    Kongzhi yu Juece/Control and Decision, 2010, 25 (06): : 801 - 807
  • [32] Continuous Student Knowledge Tracing Using SVD and Concept Maps
    Teodorescu, Oana Maria
    Popescu, Paul Stefan
    Mocanu, Lucian Mihai
    Mihaescu, Marian Cristian
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2021, 21 (01) : 75 - 82
  • [33] Neural Attentive Knowledge Tracing Model for Student Performance Prediction
    Zhang, Junrui
    Mo, Yun
    Chen, Changzhi
    He, Xiaofeng
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 641 - 648
  • [34] How student progress monitoring improves instruction
    Safer, N
    Fleischman, S
    EDUCATIONAL LEADERSHIP, 2005, 62 (05) : 81 - 83
  • [35] IDENTIFYING A MEASURE FOR MONITORING STUDENT READING PROGRESS
    FUCHS, LS
    FUCHS, D
    SCHOOL PSYCHOLOGY REVIEW, 1992, 21 (01) : 45 - 58
  • [36] Domain Knowledge Distillation and Supervised Contrastive Learning for Industrial Process Monitoring
    Ai, Mingxi
    Xie, Yongfang
    Ding, Steven X. X.
    Tang, Zhaohui
    Gui, Weihua
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (09) : 9452 - 9462
  • [37] Enhanced Learning Behaviors and Ability Knowledge Tracing
    Ma, Fanglan
    Zhu, Changsheng
    Lei, Peng
    Yuan, Peiwen
    APPLIED SCIENCES-BASEL, 2025, 15 (02):
  • [38] A survey on deep learning based knowledge tracing
    Song, Xiangyu
    Li, Jianxin
    Cai, Taotao
    Yang, Shuiqiao
    Yang, Tingting
    Liu, Chengfei
    KNOWLEDGE-BASED SYSTEMS, 2022, 258
  • [39] Interpreting Deep Learning Models for Knowledge Tracing
    Yu Lu
    Deliang Wang
    Penghe Chen
    Qinggang Meng
    Shengquan Yu
    International Journal of Artificial Intelligence in Education, 2023, 33 : 519 - 542
  • [40] Learning Behavior-oriented Knowledge Tracing
    Xu, Bihan
    Huang, Zhenya
    Liu, Jiayu
    Shen, Shuanghong
    Liu, Qi
    Chen, Enhong
    Wu, Jinze
    Wang, Shijin
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2789 - 2800