Lie PCA: Density estimation for symmetric manifolds

被引:0
|
作者
Cahill, Jameson [1 ]
Mixon, Dustin G. [2 ,3 ]
Parshall, Hans [4 ]
机构
[1] Univ North Carolina Wilmington, Dept Math & Stat, Wilmington, NC USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[3] Ohio State Univ, Translat Data Analyt Inst, Columbus, OH 43210 USA
[4] Western Washington Univ, Dept Math, Bellingham, WA USA
关键词
Density estimation; Manifold learning; Principal component analysis;
D O I
10.1016/j.acha.2023.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an extension to local principal component analysis for learning symmetric manifolds. In particular, we use a spectral method to approximate the Lie algebra corresponding to the symmetry group of the underlying manifold. We derive the sample complexity of our method for various manifolds before applying it to various data sets for improved density estimation.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:279 / 295
页数:17
相关论文
共 50 条
  • [41] Geometric structures arising from kernel density estimation on Riemannian manifolds
    Kim, Yoon Tae
    Park, Hyun Suk
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 114 : 112 - 126
  • [42] Fault Detection in a Multivariate Process Based on Kernel PCA and Kernel Density Estimation
    Samuel, Raphael Tari
    Cao, Yi
    PROCEEDINGS OF THE 2014 20TH INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC'14), 2014, : 146 - 151
  • [43] Minkowski Symmetric Lie Algebras and Symmetric Berwald Spaces
    Shaoqiang Deng
    Zixin Hou
    Geometriae Dedicata, 2005, 113 : 95 - 105
  • [44] A Tour on Hermitian Symmetric Manifolds
    Viviani, Filippo
    COMBINATORIAL ALGEBRAIC GEOMETRY, 2014, 2108 : 149 - 239
  • [45] On weakly symmetric Riemannian manifolds
    Shaikh, Absos Ali
    Jana, Sanjib Kumar
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2007, 71 (1-2): : 27 - 41
  • [46] On generalized pseudo symmetric manifolds
    Chaki, MC
    Mondal, SP
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1997, 51 (1-2): : 35 - 42
  • [47] ON PSEUDO RICCI SYMMETRIC MANIFOLDS
    De, Uday Chand
    Gazi, Abul Kalam
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2012, 58 (01): : 209 - 222
  • [48] Minkowski symmetric Lie algebras and symmetric Berwald spaces
    Deng, SQ
    Hou, ZX
    GEOMETRIAE DEDICATA, 2005, 113 (01) : 95 - 105
  • [49] Lie and Courant algebroids on foliated manifolds
    Izu Vaisman
    Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 805 - 830
  • [50] LIE CONTACT MANIFOLDS .2.
    SATO, H
    YAMAGUCHI, K
    MATHEMATISCHE ANNALEN, 1993, 297 (01) : 33 - 57