Lie PCA: Density estimation for symmetric manifolds

被引:0
|
作者
Cahill, Jameson [1 ]
Mixon, Dustin G. [2 ,3 ]
Parshall, Hans [4 ]
机构
[1] Univ North Carolina Wilmington, Dept Math & Stat, Wilmington, NC USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[3] Ohio State Univ, Translat Data Analyt Inst, Columbus, OH 43210 USA
[4] Western Washington Univ, Dept Math, Bellingham, WA USA
关键词
Density estimation; Manifold learning; Principal component analysis;
D O I
10.1016/j.acha.2023.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an extension to local principal component analysis for learning symmetric manifolds. In particular, we use a spectral method to approximate the Lie algebra corresponding to the symmetry group of the underlying manifold. We derive the sample complexity of our method for various manifolds before applying it to various data sets for improved density estimation.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:279 / 295
页数:17
相关论文
共 50 条
  • [1] THE CAYLEY TRANSFORM ON LIE GROUPS, SYMMETRIC SPACES AND STIEFEL MANIFOLDS
    Macias-Virgos, Enrique
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 63 (02): : 143 - 160
  • [2] Density estimation on manifolds with boundary
    Berry, Tyrus
    Sauer, Timothy
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 107 : 1 - 17
  • [3] Kernel density estimation on Riemannian manifolds
    Pelletier, B
    STATISTICS & PROBABILITY LETTERS, 2005, 73 (03) : 297 - 304
  • [4] Level set and density estimation on manifolds
    Cholaquidis, Alejandro
    Fraiman, Ricardo
    Moreno, Leonardo
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 189
  • [5] Symmetric hypersurfaces in Riemannian manifolds contracting to Lie-groups by their mean curvature
    Smoczyk, K
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (02) : 155 - 170
  • [6] ESTIMATION OF A SYMMETRIC DENSITY-FUNCTION
    KRAFT, CH
    LEPAGE, Y
    VANEEDEN, C
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1985, 14 (02) : 273 - 288
  • [7] Kernel Density Estimation on Symmetric Spaces
    Asta, Dena Marie
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2015, 2015, 9389 : 779 - 787
  • [8] Locally adaptive density estimation on Riemannian manifolds
    Henry, Guillermo
    Munoz, Andres
    Rodriguez, Daniela
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2013, 37 (02) : 111 - 129
  • [9] Density Level Set Estimation on Manifolds with DBSCAN
    Jiang, Heinrich
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [10] Locally adaptive density estimation on Riemannian manifolds
    Henry, Guillermo
    Muñoz, Andr´es
    Rodriguez, Daniela
    SORT, 2013, 37 (02): : 111 - 130