LiF-Rich Interfaces and HF Elimination Achieved by a Multifunctional Additive Enable High-Performance Li/LiNi0.8Co0.1Mn0.1O2 Batteries

被引:13
|
作者
Lei, Yue [1 ]
Xu, Xin [1 ]
Yin, Junying [1 ,2 ]
Jiang, Sen [1 ]
Xi, Kang [1 ]
Wei, Lai [1 ]
Gao, Yunfang [1 ]
机构
[1] Zhejiang Univ Technol, Coll Chem Engn, Hangzhou 310014, Zhejiang, Peoples R China
[2] Binzhou Univ, Coll Chem Engn & Safety, Binzhou 256603, Shandong, Peoples R China
关键词
electrolyte additive; pentafluorophenyl trifluoroacetate; electrode-electrode interphases; HF capture; lithium-metal batteries; LITHIUM-ION BATTERIES; ELECTROLYTES;
D O I
10.1021/acsami.2c22089
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Li-metal batteries (LMBs), especially in combination with high-energy-density Ni-rich materials, exhibit great potential for next-generation rechargeable Li batteries. Nevertheless, poor cathode-/anode-electrolyte interfaces (CEI/SEI) and hydrofluoric acid (HF) attack pose a threat to the electrochemical and safety performances of LMBs due to aggressive chemical and electrochemical reactivities of high-Ni materials, metallic Li, and carbonate-based electrolytes with the LiPF6 salt. Herein, the carbonate electrolyte based on LiPF6 is formulated by a multifunctional electrolyte additive pentafluorophenyl trifluoroacetate (PFTF) to adapt the Li/LiNi0.8Co0.1Mn0.1O2 (NCM811) battery. It is theoretically illustrated and experimentally revealed that HF elimination and the LiF-rich CEI/SEI films are successfully achieved via the chemical and electrochemical reactions of the PFTF additive. Significantly, the LiF-rich SEI film with high electrochemical kinetics facilitates Li homogeneous deposition and prevents dendritic Li from forming and growing. Benefiting from the collaborative protection of PFTF on the interfacial modification and HF capture, the capacity ratio of the Li/NCM811 battery is boosted by 22.4%, and the cycling stability of the symmetrical Li cell is expanded over 500 h. This provided strategy is conducive to the achievement of high-performance LMBs with Ni-rich materials by optimizing the electrolyte formula.
引用
收藏
页码:11777 / 11786
页数:10
相关论文
共 50 条
  • [31] Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole
    Xunhui Xiong
    Dong Ding
    Zhixing Wang
    Bin Huang
    Huajun Guo
    Xinhai Li
    Journal of Solid State Electrochemistry, 2014, 18 : 2619 - 2624
  • [32] Synthesis and Electrochemical Performance in Modified Electrolyte of Microspheres LiNi0.8Co0.1Mn0.1O2
    Ma Shi-Ping
    Cui Yong-Li
    Zhu Hong-Gang
    Zuo Wen-Qing
    Shi Yue-Li
    Zhuang Quan-Chao
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2018, 34 (07) : 1303 - 1311
  • [33] Effect of sintering temperature on cycling performance and rate performance of LiNi0.8Co0.1Mn0.1O2
    Li, Xiang-qun
    Xiong, Xun-hui
    Wang, Zhi-xing
    Chen, Qi-yuan
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2014, 24 (12) : 4023 - 4029
  • [34] A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials
    Xiong, Xunhui
    Wang, Zhixing
    Yin, Xing
    Guo, Huajun
    Li, Xinhai
    MATERIALS LETTERS, 2013, 110 : 4 - 9
  • [35] Preparation and Electrochemical Performance of Macroporous Ni-rich LiNi0.8Co0.1Mn0.1O2 Cathode Material
    Li, Tongxin
    Li, Donglin
    Zhang, Qingbo
    Gao, Jianhang
    Kong, Xiangze
    Fan, Xiaoyong
    Gou, Lei
    ACTA CHIMICA SINICA, 2021, 79 (05) : 679 - 684
  • [36] High performance of phosphorus and fluorine co-doped LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium ion batteries
    Yuan, An
    Tang, Hao
    Liu, Li
    Ying, Jin
    Tan, Lian
    Tan, Long
    Sun, Runguang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 844
  • [37] Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries
    Duc-Luong Vu
    Jae-won Lee
    Korean Journal of Chemical Engineering, 2016, 33 : 514 - 526
  • [38] Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries
    Duc-Luong Vu
    Lee, Jae-won
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2016, 33 (02) : 514 - 526
  • [39] Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3
    Meng, Kui
    Wang, Zhixing
    Guo, Huajun
    Li, Xinhai
    Wang, Ding
    ELECTROCHIMICA ACTA, 2016, 211 : 822 - 831
  • [40] Construction of a Stable LiNi0.8Co0.1Mn0.1O2 (NCM811) Cathode Interface by a Multifunctional Organosilicon Electrolyte Additive
    Zheng, Yezhen
    Xu, Ningbo
    Chen, Shijian
    Liao, Ying
    Zhong, Guiming
    Zhang, Zhongru
    Yang, Yong
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (03) : 2837 - 2845