Superior electrochemical properties of Na3V2(PO4)2F3/rGO composite cathode for high-performance sodium-ion batteries

被引:1
|
作者
Al-Marri, Abdulhadi Hamad [1 ,2 ]
机构
[1] Univ Hafr Al Batin, Coll Sci, Dept Chem, POB 1803, Hafar al Batin 39524, Saudi Arabia
[2] Univ Tabuk, Alwajh Coll, Dept Chem, Tabuk 71421, Saudi Arabia
关键词
NVPF; Reduced graphene oxide (rGO); Electrochemical characterization; Cathode materials; Cycling stability; Sodium-ion battery; CARBON-COATED NA3V2(PO4)(3); HIGH-VOLTAGE CATHODE; HIGH-POWER; ELECTRODE MATERIALS; ASSISTED SYNTHESIS; NANOPARTICLES; STORAGE; NANOCOMPOSITE; MECHANISM;
D O I
10.1007/s10008-024-05836-3
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Na3V2(PO4)(2)F-3 has garnered attention as a promising cathode material, primarily due to its substantial theoretical capacity, high operating voltage, and high structural stability. Nonetheless, this material suffers from the low intrinsic electronic conductivity, resulting in a considerable impact on the material properties. To address this challenge, we employ a straightforward hydro-solvothermal reduction process to fabricate Na3V2(PO4)(2)F-3/reduced graphene oxide composites featuring a three-dimensional conductive structure. Through an integrated approach involving material synthesis, structural characterization, and electrochemical analysis, we elucidate the synergistic effects between Na3V2(PO4)2F3 and reduced graphene oxide in facilitating sodium ion storage and transport. The Na3V2(PO4)(2)F-3/reduced graphene oxide cathode in a Na ion cell exhibits reversible capacities of 127 mAh.g(-1) at 0.1C and 74 mAh.g(-1) at 10C with a 99% retention after 100 cycles at 25 degree celsius. Excellent capacity, reversibility, structure stability, and improved ionic diffusivity make novel composite material an advanced cathode material for sodium-ion batteries, contributing to the development of cost-effective and high-performance energy storage solutions for a sustainable future.
引用
收藏
页码:2861 / 2872
页数:12
相关论文
共 50 条
  • [31] Hierarchical hollow microspheres Na3V2(PO4)2F3C@rGO as high-performance cathode materials for sodium ion batteries
    Du, Peng
    Mi, Kan
    Hu, Fangdong
    Jiang, Xiaolei
    Wang, Debao
    Zheng, Xiuwen
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (30) : 12985 - 12992
  • [32] Fabrication of graphene-encapsulated Na3V2(PO4)3 as high-performance cathode materials for sodium-ion batteries
    Tao, Shi
    Wang, Xingbo
    Cui, Peixin
    Wang, Yu
    Haleem, Yasir A.
    Wei, Shenghui
    Huang, Weifeng
    Song, Li
    Chu, Wangsheng
    RSC ADVANCES, 2016, 6 (49): : 43591 - 43597
  • [33] On the Effect of Silicon Substitution in Na3V2(PO4)3 on the Electrochemical Behavior as Cathode for Sodium-Ion Batteries
    Aragon, Mari J.
    Lavela, Pedro
    Ortiz, Gregorio F.
    Alcantara, Ricardo
    Tirado, Jose L.
    CHEMELECTROCHEM, 2018, 5 (02): : 367 - 374
  • [34] Cathode properties of Na3M2(PO4)2F3 [M = Ti, Fe, V] for sodium-ion batteries
    Chihara, Kuniko
    Kitajou, Ayuko
    Gocheva, Irina D.
    Okada, Shigeto
    Yamaki, Jun-ichi
    JOURNAL OF POWER SOURCES, 2013, 227 : 80 - 85
  • [35] Na3V2(PO4)3/C.Na3V2(PO4)2F3/C@rGO blended cathode material with elevated energy density for sodium ion batteries
    Cheng, Jun
    Chen, Yanjun
    Sun, Shiqi
    Tian, Zeyi
    Linghu, Yaoyao
    Tian, Zhen
    Wang, Chao
    He, Zhenfeng
    Guo, Li
    CERAMICS INTERNATIONAL, 2021, 47 (13) : 18065 - 18074
  • [36] Superior conductivity and accelerated kinetics Na3V2(PO4)2F3@CNTs with high performance for sodium-ion batteries
    Tong, Haitao
    Han, Haowei
    Zhang, Guangying
    Gao, Kefu
    Dong, Qingyu
    Hu, Fangdong
    Jiang, Xiaolei
    IONICS, 2022, 28 (06) : 2827 - 2835
  • [37] Superior conductivity and accelerated kinetics Na3V2(PO4)2F3@CNTs with high performance for sodium-ion batteries
    Haitao Tong
    Haowei Han
    Guangying Zhang
    Kefu Gao
    Qingyu Dong
    Fangdong Hu
    Xiaolei Jiang
    Ionics, 2022, 28 : 2827 - 2835
  • [38] Engineering Crystal Growth and Surface Modification of Na3V2(PO4)2F3 Cathode for High-Energy-Density Sodium-Ion Batteries
    Liang, Kang
    Zhao, Hongshun
    Li, Jianbin
    Huang, Xiaobing
    Jia, Shuyong
    Chen, Wenkai
    Ren, Yurong
    SMALL, 2023, 19 (19)
  • [39] A robust carbon coating of Na3V2(PO4)3 cathode material for high performance sodium-ion batteries
    Shen, Liying
    Li, Yong
    Roy, Swagata
    Yin, Xiuping
    Liu, Wenbo
    Shi, Shanshan
    Wang, Xuan
    Yin, Xuemin
    Zhang, Jiujun
    Zhao, Yufeng
    CHINESE CHEMICAL LETTERS, 2021, 32 (11) : 3570 - 3574
  • [40] Na3V2(PO4)3 with specially designed carbon framework as high performance cathode for sodium-ion batteries
    Zheng, Li-Li
    Xue, Yuan
    Deng, Liang
    Wu, Guo-Rui
    Hao, Su-E.
    Wang, Zhen-bo
    CERAMICS INTERNATIONAL, 2019, 45 (04) : 4637 - 4644