Bone Biomarkers Based on Magnetic Resonance Imaging

被引:1
|
作者
Jerban, Saeed [1 ]
Jang, Hyungseok [1 ]
Chang, Eric Y. [1 ,2 ]
Bukata, Susan [3 ]
Du, Jiang [1 ,2 ,4 ]
Chung, Christine B. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Radiol, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Vet Affairs San Diego Healthcare Syst, Res Serv, San Diego, CA USA
[3] Univ Calif San Diego, Dept Orthopaed Surg, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
magnetic resonance imaging; cortical bone; trabecular bone; biomarkers; ultrashort echo time; HUMAN CORTICAL BONE; MARROW FAT-CONTENT; DUAL INVERSION-RECOVERY; PROJECTION MRI WASPI; ECHO-TIME MRI; TRABECULAR BONE; IN-VIVO; QUANTITATIVE ULTRASOUND; BOUND WATER; PORE-WATER;
D O I
10.1055/s-0043-1776431
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance imaging (MRI) is increasingly used to evaluate the microstructural and compositional properties of bone. MRI-based biomarkers can characterize all major compartments of bone: organic, water, fat, and mineral components. However, with a short apparent spin-spin relaxation time (T2*), bone is invisible to conventional MRI sequences that use long echo times. To address this shortcoming, ultrashort echo time MRI sequences have been developed to provide direct imaging of bone and establish a set of MRI-based biomarkers sensitive to the structural and compositional changes of bone. This review article describes the MRI-based bone biomarkers representing total water, pore water, bound water, fat fraction, macromolecular fraction in the organic matrix, and surrogates for mineral density. MRI-based morphological bone imaging techniques are also briefly described.
引用
收藏
页码:62 / 77
页数:16
相关论文
共 50 条
  • [31] Magnetic resonance imaging for chronic pain: diagnosis, manipulation, and biomarkers
    Yiheng Tu
    Jin Cao
    Yanzhi Bi
    Li Hu
    Science China Life Sciences, 2021, 64 : 879 - 896
  • [32] Emerging Quantitative Magnetic Resonance Imaging Biomarkers of Hepatic Steatosis
    Reeder, Scott B.
    HEPATOLOGY, 2013, 58 (06) : 1877 - 1880
  • [33] Special issue on magnetic resonance imaging biomarkers of renal disease
    Paul Hockings
    Christoffer Laustsen
    Jaap A. Joles
    Patrick B. Mark
    Steven Sourbron
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2020, 33 : 1 - 2
  • [34] Magnetic resonance imaging for chronic pain: diagnosis,manipulation, and biomarkers
    Yiheng Tu
    Jin Cao
    Yanzhi Bi
    Li Hu
    Science China(Life Sciences), 2021, 64 (06) : 879 - 896
  • [35] Knee Cartilage and Subchondral Bone Evaluations by Magnetic Resonance Imaging Correlate with Histological Biomarkers in an Osteoarthritis Rabbit Model
    Sifre, Vicente
    Ten-Esteve, Amadeo
    Serra, C. Ivan
    Soler, Carme
    Alberich-Bayarri, Angel
    Segarra, Sergi
    Marti-Bonmati, Luis
    CARTILAGE, 2022, 13 (03)
  • [36] MAGNETIC-RESONANCE-IMAGING OF THE FETAL TEMPORAL BONE
    ISAACSON, G
    MINTZ, MC
    SASAKI, CT
    LARYNGOSCOPE, 1986, 96 (12): : 1343 - 1346
  • [37] Magnetic resonance imaging of the bone marrow in hematologic malignancies
    Moulopoulos, LA
    Dimopoulos, MA
    BLOOD, 1997, 90 (06) : 2127 - 2147
  • [38] Magnetic resonance imaging of bone marrow for TAFRO syndrome
    Nakamura, Gen
    Homma, Noriyuki
    Kasai, Akio
    Kasami, Takuya
    Makino, Kunihiko
    Aoki, Youhei
    Wakaki, Kunihiko
    Nakagawa, Norihito
    MODERN RHEUMATOLOGY, 2019, 29 (03) : 551 - 557
  • [39] MAGNETIC-RESONANCE-IMAGING OF BONE-MARROW
    PATHRIA, MN
    ISSACS, P
    CURRENT OPINION IN RADIOLOGY, 1992, 4 (06) : 21 - 31
  • [40] Magnetic Resonance Imaging for the Assessment of Long Bone Tumors
    Jin, Tao
    Deng, Zhi-Ping
    Liu, Wei-Feng
    Xu, Hai-Rong
    Li, Yuan
    Niu, Xiao-Hui
    CHINESE MEDICAL JOURNAL, 2017, 130 (21) : 2547 - 2550