Soil Moisture Retrieval During Crop Growth Cycle Using Satellite SAR Time Series

被引:4
|
作者
Muhuri, Arnab [1 ,2 ]
Goita, Kalifa [1 ]
Magagi, Ramata [1 ]
Wang, Hongquan [1 ,3 ]
机构
[1] Univ Sherbrooke, Dept Geomat Appl, Ctr Applicat & Rech Teledetect, Sherbrooke, PQ J1K 2R1, Canada
[2] Christian Albrechts Univ Kiel, Geograph Inst, Earth Observat & Modelling, D-24118 Kiel, Germany
[3] Agr & Agri Food Canada AAFC, Lethbridge Res & Dev Ctr, 5403 1 Ave S, Lethbridge, AB T1J 4B1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Dubois model; polarimetric SAR; RADARSAT-2 (RS2); soil moisture retrieval; water cloud model (WCM); SENTINEL-1; ROUGHNESS; MODEL; SMAP; PARAMETERIZATION; SCATTERING; ALGORITHM; SYNERGY; AREAS;
D O I
10.1109/JSTARS.2023.3280181
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Satellite SAR-based soil moisture retrieval over agricultural fields, under crop overlain conditions, is a challenging exercise. This is so because the overlying crop volume interacts with both the incoming and the backscattered radar signal. Therefore, the soil moisture linked solely to the top layer (0-5 cm) of the soil cannot be reliably retrieved under such conditions without avoiding the obscuring effect of growing crop volume. In this investigation, we demonstrated a proof-of-concept for a time-series approach to retrieve soil moisture during crop growth cycle. Contrary to the use of the single-scene approach, the novelty of the proposed approach lies in exploiting the satellite SAR time series acquired during a cropping cycle. The proposed time-series approach is effective for capturing the nuances in the crop phenological stages while calibrating the Dubois-water cloud model (WCM) soil moisture retrieval model. By employing this approach, we achieved the 0.04 m(3)m(-3) soil moisture retrieval root-mean-square error benchmark at a high spatial resolution and addressed the issue of solving for the Dubois-WCM model constants under data-constrained conditions. Furthermore, we observed that the combination of temporally non-overlapping vegetation descriptors (optical and SAR) resulted in degradation in the performance of the retrievals and under such circumstances single polarimetric descriptor performed better.
引用
收藏
页码:9517 / 9534
页数:18
相关论文
共 50 条
  • [41] Estimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data
    Kumar, P.
    Prasad, R.
    Gupta, D. K.
    Mishra, V. N.
    Vishwakarma, A. K.
    Yadav, V. P.
    Bala, R.
    Choudhary, A.
    Avtar, R.
    [J]. GEOCARTO INTERNATIONAL, 2018, 33 (09) : 942 - 956
  • [42] Surface soil moisture retrieval based on transfer learning using SAR data on a local scale
    Hemmati, Emadoddin
    Sahebi, Mahmod Reza
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (07) : 2374 - 2406
  • [43] Soil Moisture Retrieval Using Multistatic L-Band SAR and Effective Roughness Modeling
    Tronquo, Emma
    Lievens, Hans
    Bouchat, Jean
    Defourny, Pierre
    Baghdadi, Nicolas
    Verhoest, Niko E. C.
    [J]. REMOTE SENSING, 2022, 14 (07)
  • [44] Soil moisture retrieval using the Danish L- & C-band polarimetric SAR
    Ji, JK
    vanderKeur, P
    Thomsen, A
    Skriver, H
    [J]. IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 1300 - 1302
  • [45] Soil moisture retrieval over irrigated grassland using X-band SAR data
    El Hajj, Mohammad
    Baghdadi, Nicolas
    Zribi, Mehrez
    Belaud, Gilles
    Cheviron, Bruno
    Courault, Dominique
    Charron, Francois
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 176 : 202 - 218
  • [46] Potential of Dubois model for soil moisture retrieval in prairie areas using SAR and optical data
    Bai, Xiaojing
    He, Binbin
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (22) : 5737 - 5753
  • [47] Mapping Crop Rotation by Using Deeply Synergistic Optical and SAR Time Series
    Liu, Yiqing
    Zhao, Wenzhi
    Chen, Shuo
    Ye, Tao
    [J]. REMOTE SENSING, 2021, 13 (20)
  • [48] Validation of the Soil Moisture Active Passive (SMAP) satellite soil moisture retrieval in an Arctic tundra environment
    Wrona, Elizabeth
    Rowlandson, Tracy L.
    Nambiar, Manoj
    Berg, Aaron A.
    Colliander, Andreas
    Marsh, Philip
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (09) : 4152 - 4158
  • [49] The influence of a priori information on soil moisture retrieval from SAR data
    Satalino, G
    Pasquariello, G
    Mattia, F
    Davidson, M
    Le Toan, T
    Borgeaud, M
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON RETRIEVAL OF BIO- AND GEOPHYSICAL PARAMETERS FROM SAR DATA FOR LAND APPLICATIONS, 2002, 475 : 177 - 182
  • [50] Bridging optical and SAR satellite image time series via contrastive feature extraction for crop classification
    Yuan, Yuan
    Lin, Lei
    Zhou, Zeng-Guang
    Jiang, Houjun
    Liu, Qingshan
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 195 : 222 - 232