Fast Opium Poppy Detection in Unmanned Aerial Vehicle (UAV) Imagery Based on Deep Neural Network

被引:3
|
作者
Zhang, Zhiqi [1 ,2 ]
Xia, Wendi [1 ]
Xie, Guangqi [1 ,2 ]
Xiang, Shao [2 ]
机构
[1] Hubei Univ Technol, Sch Comp Sci, Wuhan 430068, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
关键词
opium poppy detection; UAV remote sensing; deep neural network; repetitive learning; model pruning;
D O I
10.3390/drones7090559
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Opium poppy is a medicinal plant, and its cultivation is illegal without legal approval in China. Unmanned aerial vehicle (UAV) is an effective tool for monitoring illegal poppy cultivation. However, targets often appear occluded and confused, and it is difficult for existing detectors to accurately detect poppies. To address this problem, we propose an opium poppy detection network, YOLOHLA, for UAV remote sensing images. Specifically, we propose a new attention module that uses two branches to extract features at different scales. To enhance generalization capabilities, we introduce a learning strategy that involves iterative learning, where challenging samples are identified and the model's representation capacity is enhanced using prior knowledge. Furthermore, we propose a lightweight model (YOLOHLA-tiny) using YOLOHLA based on structured model pruning, which can be better deployed on low-power embedded platforms. To evaluate the detection performance of the proposed method, we collect a UAV remote sensing image poppy dataset. The experimental results show that the proposed YOLOHLA model achieves better detection performance and faster execution speed than existing models. Our method achieves a mean average precision (mAP) of 88.2% and an F1 score of 85.5% for opium poppy detection. The proposed lightweight model achieves an inference speed of 172 frames per second (FPS) on embedded platforms. The experimental results showcase the practical applicability of the proposed poppy object detection method for real-time detection of poppy targets on UAV platforms.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Detection of Flavescence doree Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery
    Albetis, Johanna
    Duthoit, Sylvie
    Guttler, Fabio
    Jacquin, Anne
    Goulard, Michel
    Poilve, Herve
    Feret, Jean-Baptiste
    Dedieu, Gerard
    REMOTE SENSING, 2017, 9 (04):
  • [22] Unmanned Aerial Vehicle (UAV) Attitude Estimation Using Artificial Neural Network Approach
    Say, Marc Francis Q.
    Sybingco, Edwin
    Bandala, Argel A.
    Vicerra, Ryan Rhay P.
    Chua, Alvin Y.
    2019 IEEE 11TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM), 2019,
  • [23] Research on detection method of pavement diseases based on Unmanned Aerial Vehicle (UAV)
    Mao, Zhijian
    Zhao, Chihang
    Zheng, Youfeng
    Mao, Yan
    Li, Hao
    Hua, Liru
    Liu, Yang
    2020 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING AND ARTIFICIAL INTELLIGENCE, 2020, 11584
  • [24] Estimation of Strawberry Canopy Volume in Unmanned Aerial Vehicle RGB Imagery Using an Object Detection-Based Convolutional Neural Network
    Gang, Min-Seok
    Sutthanonkul, Thanyachanok
    Lee, Won Suk
    Liu, Shiyu
    Kim, Hak-Jin
    Sensors, 2024, 24 (21)
  • [25] Tree-Stump Detection, Segmentation, Classification, and Measurement Using Unmanned Aerial Vehicle (UAV) Imagery
    Puliti, Stefano
    Talbot, Bruce
    Astrup, Rasmus
    FORESTS, 2018, 9 (03):
  • [26] Clustering green openspace using UAV (Unmanned Aerial Vehicle) with CNN (Convolutional Neural Network)
    Fikri, Moh Yanni
    Azzarkhiyah, Khafid
    Al Firdaus, Muhammad Juan
    Winarto, Tommy Andreas
    Syai'in, Mat
    Adhitya, Ryan Yudha
    Endrasmono, Joko
    Rahmat, Mohammad Basuki
    Setiyoko, Annas Singgih
    Fathulloh
    Zuliari, Efrita Arfah
    Budianto, Agus
    Soeprijanto, Adi
    2019 INTERNATIONAL SYMPOSIUM ON ELECTRONICS AND SMART DEVICES (ISESD 2019): FUTURE SMART DEVICES AND NANOTECHNOLOGY FOR MICROELECTRONICS, 2019,
  • [27] Attitude Estimation of Unmanned Aerial Vehicle Based on LSTM Neural Network
    Liu, Yaohua
    Zhou, Yimin
    Li, Xiang
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 244 - 249
  • [28] Neural network based feedback linearization control of an unmanned aerial vehicle
    Necsulescu D.
    Jiang Y.-W.
    Kim B.
    International Journal of Automation and Computing, 2007, 4 (1) : 71 - 79
  • [29] Deep learning-based object detection in maritime unmanned aerial vehicle imagery: Review and experimental comparisons
    Zhao, Chenjie
    Liu, Ryan Wen
    Qu, Jingxiang
    Gao, Ruobin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128
  • [30] Deep learning-based object detection in maritime unmanned aerial vehicle imagery: Review and experimental comparisons
    Zhao, Chenjie
    Liu, Ryan Wen
    Qu, Jingxiang
    Gao, Ruobin
    Engineering Applications of Artificial Intelligence, 2024, 128