Identifying Responder Subgroups for Exacerbations Using Machine Learning in the Impact Trial

被引:0
|
作者
Verstraete, K. [1 ]
Gyselinck, I. [1 ]
Huts, H. [2 ]
Staes, M. [1 ]
De Vos, M. [2 ]
Janssens, W. [1 ]
机构
[1] Katholieke Univ Leuven, Lab Resp Dis & Thorac Surg, Leuven, Belgium
[2] Katholieke Univ Leuven, STADIUS Ctr Dynam Syst, Dept Elect Engn ESAT, Signal Proc, Leuven, Belgium
关键词
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
A2698
引用
收藏
页数:1
相关论文
共 50 条
  • [21] Identifying Real Estate Opportunities Using Machine Learning
    Baldominos, Alejandro
    Blanco, Ivan
    Moreno, Antonio Jose
    Iturrarte, Ruben
    Bernardez, Oscar
    Afonso, Carlos
    [J]. APPLIED SCIENCES-BASEL, 2018, 8 (11):
  • [22] Identifying the risk culture of banks using machine learning
    Owusu, Abena
    Gupta, Aparna
    [J]. INTERNATIONAL JOURNAL OF MANAGERIAL FINANCE, 2024, 20 (02) : 377 - 405
  • [23] IDENTIFYING VULNERABILITY SIGNATURES THROUGH MACHINE LEARNING IN AN UMBRELLA TRIAL FOR GLIOBLASTOMA
    Lee, Matthew
    Tang, Nanyun
    Ahluwalia, Manmeet
    Fonkem, Ekokobe
    Fink, Karen
    Dhruv, Harshil
    Berens, Michael
    Peng, Sen
    [J]. NEURO-ONCOLOGY, 2020, 22 : 6 - 7
  • [24] On using machine learning algorithms to define clinically meaningful patient subgroups
    Pinal-Fernandez, Iago
    Mammen, Andrew Lee
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2020, 79 (10)
  • [25] On using machine learning algorithms to define clinically meaningful patient subgroups
    Knevel, Rachel
    Huizinga, Tom W. J.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2020, 79 (12)
  • [26] Use of Machine learning to predict asthma exacerbations
    Janson, Christer
    Johansson, Gunnar
    Larsson, Kjell
    Stallberg, Bjorn
    Mueller, Mario
    Luczko, Mateusz
    Kjoeller, Bine
    Fell, Stuart
    Bacher, Gerald
    Holzhauer, Bjorn
    Goyal, Pankaj
    Lisspers, Karin
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2020, 56
  • [27] MACHINE LEARNING MODELS TO PREDICT ASTHMA EXACERBATIONS
    Turcatel, Gianluca
    Xiao, Yi
    Caveney, Scott
    Gnacadja, Gilles
    Kim, Julie
    Molfino, Nestor
    [J]. CHEST, 2023, 164 (04) : 53A - 53A
  • [28] Identifying Subgroups that Vary in Weight Loss Success in the DIETFITS Trial using Signal Detection
    Patel, Michele
    Landry, Matthew
    Fielding-Singh, Priya
    Zamora, Astrid
    King, Abby
    Gardner, Christopher
    [J]. OBESITY, 2023, 31 : 19 - 20
  • [29] Identifying Subgroups with Differential Responses to Amiodarone among Cardiac Arrest Patients with a Shockable Rhythm at Hospital Arrival using the Machine Learning Approach
    Emoto, Ryo
    Nishikimi, Mitsuaki
    Kikutani, Kazuya
    Ishii, Junki
    Ohshimo, Shinichiro
    Matsui, Shigeyuki
    Shime, Nobuaki
    [J]. REVIEWS IN CARDIOVASCULAR MEDICINE, 2024, 25 (07)
  • [30] Identifying Disease - Treatment Relations using Machine Learning Approach
    Keerrthega, M. C.
    Thenmozhi, D.
    [J]. FOURTH INTERNATIONAL CONFERENCE ON RECENT TRENDS IN COMPUTER SCIENCE & ENGINEERING (ICRTCSE 2016), 2016, 87 : 306 - 315