Identifying Responder Subgroups for Exacerbations Using Machine Learning in the Impact Trial

被引:0
|
作者
Verstraete, K. [1 ]
Gyselinck, I. [1 ]
Huts, H. [2 ]
Staes, M. [1 ]
De Vos, M. [2 ]
Janssens, W. [1 ]
机构
[1] Katholieke Univ Leuven, Lab Resp Dis & Thorac Surg, Leuven, Belgium
[2] Katholieke Univ Leuven, STADIUS Ctr Dynam Syst, Dept Elect Engn ESAT, Signal Proc, Leuven, Belgium
关键词
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
A2698
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Identifying Subgroups of Patients With Autism by Gene Expression Profiles Using Machine Learning Algorithms
    Lin, Ping-, I
    Moni, Mohammad Ali
    Gau, Susan Shur-Fen
    Eapen, Valsamma
    [J]. FRONTIERS IN PSYCHIATRY, 2021, 12
  • [2] Identifying subgroups of urge suppression in Obsessive-Compulsive Disorder using machine learning
    Eng, Goi Khia
    De Nadai, Alessandro S.
    Collins, Katherine A.
    Recchia, Nicolette
    Tobe, Russell H.
    Bragdon, Laura B.
    Stern, Emily R.
    [J]. JOURNAL OF PSYCHIATRIC RESEARCH, 2024, 177 : 129 - 139
  • [3] Identifying Distinct Subgroups of ICU Patients: A Machine Learning Approach
    Vranas, Kelly C.
    Jopling, Jeffrey K.
    Sweeney, Timothy E.
    Ramsey, Meghan C.
    Milstein, Arnold S.
    Slatore, Christopher G.
    Escobar, Gabriel J.
    Liu, Vincent X.
    [J]. CRITICAL CARE MEDICINE, 2017, 45 (10) : 1607 - 1615
  • [4] Identifying equity constrained subgroups using machine learning, decision modelling and optimal policy algorithms
    Glynn, David
    Hatamyar, Julia
    Giardina, John
    Pandya, Ankur
    Kreif, Noemi
    [J]. MEDICAL DECISION MAKING, 2024, 44 (02) : NP193 - NP196
  • [5] Identifying schizophrenia subgroups using clustering and supervised learning
    Talpalaru, Alexandra
    Bhagwat, Nikhil
    Devenyi, Gabriel A.
    Lepage, Martin
    Chakravarty, M. Mallar
    [J]. SCHIZOPHRENIA RESEARCH, 2019, 214 : 51 - 59
  • [6] Identifying Subgroups of SLE Patients with Differential Responses to a BLyS Inhibitor: Application of a Machine Learning Algorithm to Clinical Trial Data
    Kim, Mimi
    Pradhan, Kith
    Izmirly, Peter
    Kalunian, Kenneth
    Hanrahan, Leslie
    Merrill, Joan
    [J]. ARTHRITIS & RHEUMATOLOGY, 2019, 71
  • [7] Identifying Hypernatremia Subgroups with Differing Survival by Machine Learning Among Hospitalized Patients
    Chong, Grace Y.
    Thongprayoon, Charat
    Mao, Michael A.
    Kattah, Andrea G.
    Keddis, Mira T.
    Erickson, Stephen B.
    Dillon, John J.
    Garovic, Vesna D.
    Cheungpasitporn, Wisit
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (10): : 379 - 379
  • [8] Identifying homogeneous subgroups of patients and important features: a topological machine learning approach
    Ewan Carr
    Mathieu Carrière
    Bertrand Michel
    Frédéric Chazal
    Raquel Iniesta
    [J]. BMC Bioinformatics, 22
  • [9] Identifying homogeneous subgroups of patients and important features: a topological machine learning approach
    Carr, Ewan
    Carriere, Mathieu
    Michel, Bertrand
    Chazal, Frederic
    Iniesta, Raquel
    [J]. BMC BIOINFORMATICS, 2021, 22 (01)
  • [10] Identifying the status of genetic lesions in cancer clinical trial documents using machine learning
    Wu, Yonghui
    Levy, Mia A.
    Micheel, Christine M.
    Yeh, Paul
    Tang, Buzhou
    Cantrell, Michael J.
    Cooreman, Stacy M.
    Xu, Hua
    [J]. BMC GENOMICS, 2012, 13