Preparation of High-Stability Ceramic Slurry with Gel Behavior for Stereolithography 3D Printing

被引:7
|
作者
Wang, Ning [1 ]
Chang, Hai [1 ]
Zhang, Chi [1 ]
Wu, Yingna [1 ]
Yang, Rui [1 ,2 ]
Zhang, Xing [2 ]
Zhai, Zirong [1 ]
机构
[1] ShanghaiTech Univ, Ctr Adapt Syst Engn, 393 Huaxia Middle Rd, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Peoples R China
关键词
stereolithography printing; slurry stability; rheology; loss factor; gel behavior; SUSPENSIONS; SEDIMENTATION;
D O I
10.3390/ma16072816
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Maintaining sufficient uniformity and stability of a ceramic slurry throughout the printing cycle is key to ensuring the performance of ceramic parts in ceramic-slurry stereolithography. In this study, a stable three-dimensional network structure was introduced into a slurry to achieve slurry uniformity and stability based on rheology theory. The effects of the particle size, solid loading, dispersant content, and gelling agent content on the stability of the three-dimensional network structure in the slurry were analyzed. Relatively stable three-dimensional network structures were constructed to achieve 4-week stability of micron- and submicron-size particle slurries by adjusting the contents of the dispersant and gelling agent. Stabilization ideas for different particle size ranges are provided. In addition, an empirical stability model was obtained based on the experimental results. When the predicted empirical stability factor of A was less than 0.035, the slurry exhibited good stability.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] 3D Printing of Ceramic Biomaterials
    Ly M.
    Spinelli S.
    Hays S.
    Zhu D.
    Engineered Regeneration, 2022, 3 (01): : 41 - 52
  • [32] 3D printing of ceramic implants
    Vorndran, Elke
    Moseke, Claus
    Gbureck, Uwe
    MRS BULLETIN, 2015, 40 (02) : 127 - 136
  • [33] Preparation withthe photosensitive resin for 3D printing stereolithography technique and study on its properties
    Huang, Bi-Wu
    Xie, Wang-Fu
    Yang, Zhi-Hong
    Gongneng Cailiao/Journal of Functional Materials, 2014, 45 (24): : 24100 - 24104
  • [34] 3D printing of ceramic implants
    Elke Vorndran
    Claus Moseke
    Uwe Gbureck
    MRS Bulletin, 2015, 40 : 127 - 136
  • [35] 3D printing of high-purity complex SiC structures based on stereolithography
    Qu, Piao
    Liang, Guozhen
    Hamza, Muhammad
    Mo, Yan
    Jiang, Long
    Luo, Xin
    Liu, Zhiyuan
    Liu, Changyong
    Lou, Yan
    Chen, Zhangwei
    CERAMICS INTERNATIONAL, 2024, 50 (13) : 23763 - 23774
  • [36] A computational model for stereolithography apparatus (SLA) 3D printing
    Vidhu, Nandagopal
    Gupta, Ayush
    Salajeghe, Roozbeh
    Spangenberg, Jon
    Marla, Deepak
    PROGRESS IN ADDITIVE MANUFACTURING, 2024, 9 (06) : 1605 - 1619
  • [37] Synthesis and characterization of stereolithography 3D printing fluorescent resin
    Liu, Min
    Chen, Jin
    Zheng, Lu
    Gao, Yuyu
    Liu, Yingying
    POLYMER ENGINEERING AND SCIENCE, 2023, 63 (07): : 1961 - 1973
  • [38] 3D printing for gel robotics
    Yoshida, Kazunari
    Takishima, Yuki
    Hara, Yuta
    Kawakami, Masaru
    Furukawa, Hidemitsu
    NANO-, BIO-, INFO-TECH SENSORS, AND 3D SYSTEMS II, 2018, 10597
  • [39] ADVANCED COMPUTATIONAL STRUCTURAL INFORMATICS BY STEREOLITHOGRAPHY - A 3D PRINTING
    Begum, Kousar
    Abbas, Zarafsha
    Umasri, Nukala
    Mounika, K.
    INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2018, 5 (01): : 492 - 501
  • [40] Effect of Stereolithography 3D Printing on the Properties of PEGDMA Hydrogels
    Burke, Gavin
    Devine, Declan M.
    Major, Ian
    POLYMERS, 2020, 12 (09) : 1 - 13