A machine learning approach for slow slip event detection using GNSS time-series

被引:1
|
作者
Donoso, Felipe [1 ]
Yanez, Vicente [2 ]
Ortega-Culaciati, Francisco [3 ]
Moreno, Marcos [4 ]
机构
[1] Inst Milenio Oceanog, Concepcion, Chile
[2] Univ Concepcion, Dept Geophys, FCFM, Concepcion, Chile
[3] Univ Chile, Dept Geophys, FCFM, Santiago, Chile
[4] Pontificia Univ Catolica Chile, Dept Struct & Geotech Engn, Santiago, Chile
关键词
Machine learning; Image descriptors; Transient deformation; Slow slip event; Time series analysis; Earthquake; Chile; M-W; 8.1; SUBDUCTION ZONE; TRANSIENT SIGNALS; CENTRAL CHILE; GPS; EARTHQUAKE; DEFORMATION; BENEATH; SCALE;
D O I
10.1016/j.jsames.2023.104680
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Extracting tectonic transient displacements on the Earth's surface from Global Navigation Satellite System (GNSS) time series remains a challenge, because GNSS station displacements depend on multiple processes occurring simultaneously, along with noise that obscures low-magnitude transient signals. We present a novel method for automatic detection of slow slip events (SSEs) in time series of a GNSS network by training a supervised machine learning (ML) model for classification. The proposed methodology detects both temporally and spatially the signatures of SSEs or regional transients within a GNSS network. The time series of a GNSS network were transformed into grayscale images, from which descriptors, including Bag of Visual Words (BoW) and Extended Local Binary Patterns (ELBP), were extracted. These descriptors served as input features for two distinct ML models: Support Vector Machines (SVM) and Artificial Neural Networks (NN). To train and test the ML classification model, two 3-year synthetic datasets were generated, one with GNSS networks featuring slow slip events (SSEs) of varying location, duration, onset time, and magnitude, and the other without SSEs, resulting in positive and negative sets, respectively. For each GNSS network, an image was created by combining the east and north components of the time series, which have been previously detrended and common mode error filtered. Each image is further divided into sub-images corresponding to 60 days time windows, in order to temporarily detect the existence of a transient. For training and testing, the datasets were separated into 75% for training and 25% for testing, each with 50% positive and 50% negative cases. In the final step, we analyze the positively classified images, representing the time windows in which the classifier detected transients. Within each of these windows, we identify the network's time series with the highest velocity, indicating the stations and geographic area where the detected transients occurred. The test results demonstrate that both ML models achieved high performance using both ELBP and BoW descriptors as features. Finally, our ML models were validated on a real dataset with a transient signal recorded before the 2014 Iquique earthquake in Chile, and they effectively detected this anomalous signal. The proposed method can effectively detect transient signals related to SSEs with high accuracy, sensitivity, and specificity in both the test and instrumentally recorded datasets.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Spatial and Seasonal Change Detection in Vegetation Cover Using Time-Series Landsat Satellite Images and Machine Learning Methods
    Mullapudi A.
    Vibhute A.D.
    Mali S.
    Patil C.H.
    SN Computer Science, 4 (3)
  • [42] An optimized machine learning approach to water pollution variation monitoring with time-series Landsat images
    Lin, Yi
    Li, Lang
    Yu, Jie
    Hu, Yuan
    Zhang, Tinghui
    Ye, Zhanglin
    Syed, Awase
    Li, Jonathan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
  • [43] A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data
    Zak Costello
    Hector Garcia Martin
    npj Systems Biology and Applications, 4
  • [44] A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data
    Costello, Zak
    Garcia Martin, Hector
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2018, 4
  • [45] Modelling and prediction of GNSS time series using GBDT, LSTM and SVM machine learning approaches
    Gao, Wenzong
    Li, Zhao
    Chen, Qusen
    Jiang, Weiping
    Feng, Yanming
    JOURNAL OF GEODESY, 2022, 96 (10)
  • [46] Modelling and prediction of GNSS time series using GBDT, LSTM and SVM machine learning approaches
    Wenzong Gao
    Zhao Li
    Qusen Chen
    Weiping Jiang
    Yanming Feng
    Journal of Geodesy, 2022, 96
  • [47] Jump detection in financial time series using machine learning algorithms
    Jay F. K. Au Yeung
    Zi-kai Wei
    Kit Yan Chan
    Henry Y. K. Lau
    Ka-Fai Cedric Yiu
    Soft Computing, 2020, 24 : 1789 - 1801
  • [48] Time-series prediction and forecasting of ambient noise levels using deep learning and machine learning techniques
    Tiwari, S. K.
    Kumaraswamidhas, L. A.
    Garg, N.
    NOISE CONTROL ENGINEERING JOURNAL, 2022, 70 (05) : 456 - 471
  • [49] TIME-SERIES MODELS FOR EVENT COUNTS
    AMBURGEY, TL
    CARROLL, GR
    SOCIAL SCIENCE RESEARCH, 1984, 13 (01) : 38 - 54
  • [50] Combining time-series and textual data for taxi demand prediction in event areas: A deep learning approach
    Rodrigues, Filipe
    Markou, Ioulia
    Pereira, Francisco C.
    INFORMATION FUSION, 2019, 49 : 120 - 129