Twelve-crystal prototype of Li2MoO4 scintillating bolometers for CUPID and CROSS experiments

被引:2
|
作者
Alfonso, K. [1 ]
Armatol, A. [2 ]
Augier, C. [3 ]
Avignone, F. T., III [4 ]
Azzolini, O. [5 ]
Balata, M. [6 ]
Bandac, I. C. [7 ]
Barabash, A. S. [8 ]
Bari, G. [9 ]
Barresi, A. [10 ,11 ]
Baudin, D. [2 ]
Bellini, F. [12 ,13 ]
Benato, G. [6 ]
Berest, V. [2 ]
Beretta, M. [14 ]
Bettelli, M. [15 ]
Biassoni, M. [10 ]
Billard, J. [3 ]
Boldrini, V. [9 ,15 ]
Branca, A. [10 ,11 ]
Brofferio, C. [10 ,11 ]
Bucci, C.
Calvo-Mozota, J. M. [16 ]
Camilleri, J. [1 ]
Campani, A. [17 ,18 ]
Capelli, C. [19 ]
Capelli, S. [10 ,11 ]
Cappelli, L.
Cardani, L.
Carniti, P. [10 ,11 ]
Casali, N.
Celi, E. [19 ,20 ]
Chang, C. [21 ]
Chiesa, D. [10 ,11 ]
Clemenza, M. [10 ]
Colantoni, I. [22 ]
Copello, S.
Craft, E. [23 ]
Cremonesi, O. [10 ]
Creswick, R. J.
Cruciani, A.
D'Addabbo, A.
D'Imperio, G.
Dabagov, S. [24 ]
Dafinei, I.
Danevich, F. A. [25 ,26 ]
De Jesus, M.
de Marcillac, P.
Dell'Oro, S. [10 ,11 ]
Di Domizio, S.
机构
[1] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA
[2] Univ Paris Saclay, CEA, IRFU, Saclay, France
[3] Univ Lyon, Univ Lyon 1, CNRS IN2P3, IP2I Lyon, Villeurbanne, France
[4] Univ South Carolina, Columbia, SC USA
[5] INFN Lab Nazl Legnaro, Legnaro, Italy
[6] INFN Lab Nazl Gran Sasso, Assergi, AQ, Italy
[7] Lab Subterraneo Canfranc, Canfranc Estacion, Spain
[8] Natl Res Ctr Kurchatov Inst, Kurchatov Complex Theoret & Expt Phys, Moscow, Russia
[9] INFN Sez Bologna, Bologna, Italy
[10] INFN Sez Milano Bicocca, Milan, Italy
[11] Univ Milano Bicocca, Milan, Italy
[12] INFN Sez Roma, Rome, Italy
[13] Sapienza Univ Rome, Rome, Italy
[14] Univ Calif Berkeley, Berkeley, CA USA
[15] CNR, Inst Microelect & Microsyst, Bologna, Italy
[16] Univ Int La Rioja, Escuela Super Ingn & Tecnol, Logrono, Spain
[17] INFN Sez Genova, Genoa, Italy
[18] Univ Genoa, Genoa, Italy
[19] Lawrence Berkeley Natl Lab, Berkeley, CA USA
[20] Gran Sasso Sci Inst, Laquila, Italy
[21] Argonne Natl Lab, Argonne, IL USA
[22] CNR Inst Nanotechnol, Rome, Italy
[23] Yale Univ, New Haven, CT USA
[24] INFN Lab Nazl Frascati, Frascati, Italy
[25] NASU, Inst Nucl Res, Kiev, Ukraine
[26] INFN Sez Roma Tor Vergata, Rome, Italy
[27] Univ Paris, CNRS, IN2P3, IJCLab, Orsay, France
[28] Northwestern Univ, Evanston, IL USA
[29] MIT, Cambridge, MA USA
[30] Fudan Univ, Shanghai, Peoples R China
[31] Boston Univ, Boston, MA USA
[32] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA USA
[33] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[34] Univ Calif Los Angeles, Los Angeles, CA USA
[35] Drexel Univ, Philadelphia, PA USA
[36] Johns Hopkins Univ, Baltimore, MD USA
[37] Beijing Normal Univ, Beijing, Peoples R China
[38] Univ Zaragoza, Ctr Astroparticulas & Fis Altas Energias, Zaragoza, Spain
[39] ARAID Fdn Agencia Aragonesa Invest & Desarrollo, Zaragoza, Spain
[40] Univ Sci & Technol China, Hefei, Peoples R China
[41] Nikolaev Inst Inorgan Chem, Novosibirsk, Russia
[42] INFN Sez Padova, Padua, Italy
[43] Univ Grenoble Alpes, CNRS, Grenoble INP, SIMAP,Inst Engn Univ Grenoble Alpes, Grenoble, France
[44] Univ Bologna, Bologna, Italy
基金
欧盟地平线“2020”; 新加坡国家研究基金会; 欧洲研究理事会; 美国国家科学基金会;
关键词
Cryogenic detectors; Double-beta decay detectors; Particle identification methods; Scintillators; scintillation and light emission processes (solid; gas and liquid scintillators); DOUBLE-BETA-DECAY; RESPONSE STABILIZATION; DETECTORS; PERFORMANCE;
D O I
10.1088/1748-0221/18/06/P06018
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, mu Bq/kg, level of the LMO crystals radioactive contamination by Th-228 and Ra-226.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Influence of the Electrical Field on Crystal Growth in the System Li3PO4 - Li4GeO4 - Li2MoO4 - LiF
    Ksenofontov, Dmitry A.
    Demianets, Ludmila N.
    Ivanov-Schits, Alexei K.
    Kireev, Vsevolod V.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2004, 60 : S281 - S281
  • [32] Luminescence properties of large-size Li2MoO4 single crystal grown by Czochralski method
    Chen, Xin
    Chen, Peng
    Jiang, Linwen
    Zhao, Yan
    Chen, Yaping
    Sun, Zhigang
    Chen, Hongbing
    JOURNAL OF CRYSTAL GROWTH, 2021, 558
  • [33] Conventional Czochralski growth of large Li2MoO4 single crystals
    Ahmine, A.
    Velazquez, M.
    Nagirnyi, V
    Romet, I
    Duffar, T.
    JOURNAL OF CRYSTAL GROWTH, 2022, 578
  • [34] Room-temperature preparation of Li2MoO4 and its sintering
    Inagaki, Michio
    Nishikawa, Yasuo
    Sakai, Motosugu
    Journal of the European Ceramic Society, 1992, 10 (02) : 123 - 128
  • [35] Growth of Li2MoO4 Crystals from Activated Water Solutions
    Barinova, O. P.
    Ermochenkov, I. M.
    Kuchuk, Zh. S.
    Kirsanova, S. V.
    Belov, S. D.
    Sadovskii, A. P.
    Mozhevitina, E. N.
    Khomyakov, A. V.
    Avetisov, I. Kh.
    GLASS AND CERAMICS, 2016, 72 (11-12) : 425 - 429
  • [36] Growth of Li2MoO4 Crystals from Activated Water Solutions
    O. P. Barinova
    I. M. Ermochenkov
    Zh. S. Kuchuk
    S. V. Kirsanova
    S. D. Belov
    A. P. Sadovskii
    E. N. Mozhevitina
    A. V. Khomyakov
    I. Kh. Avetisov
    Glass and Ceramics, 2016, 72 : 425 - 429
  • [37] Properties of Li2MoO4 single crystals grown by Czochralski technique
    Barinova, Olga
    Kirsanova, Svetlana
    Sadovskiy, Andrey
    Avetissov, Igor
    JOURNAL OF CRYSTAL GROWTH, 2014, 401 : 853 - 856
  • [38] CALORIMETRIC STUDY OF HIGH-PRESSURE POLYMORPHS OF LI2WO4 AND LI2MOO4
    TAKAYAMAMUROMACHI, E
    NAVROTSKY, A
    YAMAOKA, S
    JOURNAL OF SOLID STATE CHEMISTRY, 1986, 65 (02) : 241 - 250
  • [39] Phase diagram of the system Na2MoO4-Li2MoO4, crystal structures of Na7Li (MoO4)4, Na3-xLi1+x(MoO4)2, and a metastable spinel-type form of Li2MoO4
    Solodovnikov, Sergey F.
    Meshalkin, Arkadiy B.
    Grebenkin, Sergey Yu.
    Yudin, Vasiliy N.
    Solodovnikova, Zoya A.
    Zolotova, Evgeniya S.
    Plyusnin, Pavel E.
    Sukhikh, Aleksandr S.
    JOURNAL OF SOLID STATE CHEMISTRY, 2025, 342
  • [40] Phase formation in the system Li2MoO4–MgMoO4–Sc2(MoO4)3
    N. M. Kozhevnikova
    S. Yu. Batueva
    Russian Journal of Inorganic Chemistry, 2016, 61 : 1331 - 1334