Recursion Formulas on Hall Numbers for Weighted Projective Lines

被引:0
|
作者
Zhang, Xiaofeng [1 ]
机构
[1] Xiamen Inst Technol, Sch Data & Comp Sci, Xiamen 361021, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2023年 / 18卷 / 05期
关键词
Hall number; weighted projective line; recursion formula; Green's formula; STABLE CATEGORY; TILTING OBJECTS; MISSING PART; ALGEBRAS; BUNDLES; CURVES;
D O I
10.1007/s11464-021-0123-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the property of Hall numbers for the category of coherent sheaves over a weighted projective line. Several recursion formulas on Hall numbers are obtained, whose proofs rely on Green's formula. Similar formulas for tame quivers and cyclic quivers are discussed.
引用
收藏
页码:1157 / 1166
页数:10
相关论文
共 50 条
  • [21] Weighted projective lines of tubular type and equivariantization
    Chen, Jianmin
    Chen, Xiao-Wu
    JOURNAL OF ALGEBRA, 2017, 470 : 77 - 90
  • [22] Kac's Theorem for weighted projective lines
    Crawley-Boevey, William
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (06) : 1331 - 1345
  • [23] Weighted projective lines and rational surface singularities
    Iyama, Osamu
    Wemyss, Michael
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2020, 3
  • [24] Numerical adjunction formulas for weighted projective planes and lattice point counting
    Ignacio Cogolludo-Agustin, Jose
    Martin-Morales, Jorge
    Ortigas-Galindo, Jorge
    KYOTO JOURNAL OF MATHEMATICS, 2016, 56 (03) : 575 - 598
  • [25] Complex Lie algebras corresponding to weighted projective lines
    Dou, Rujing
    Sheng, Jie
    Xiao, Jie
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (04) : 629 - 639
  • [26] Complex Lie algebras corresponding to weighted projective lines
    Rujing Dou
    Jie Sheng
    Jie Xiao
    Frontiers of Mathematics in China, 2011, 6 : 629 - 639
  • [27] Monadicity Theorem and Weighted Projective Lines of Tubular Type
    Chen, Jianmin
    Chen, Xiao-Wu
    Zhou, Zhenqiang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (24) : 13324 - 13359
  • [28] NOTES ON MIGDALS RECURSION FORMULAS
    KADANOFF, LP
    ANNALS OF PHYSICS, 1976, 100 (1-2) : 359 - 394
  • [29] RECURSION FORMULAS FOR THE LIE INTEGRAL
    CHACON, RV
    FOMENKO, AT
    ADVANCES IN MATHEMATICS, 1991, 88 (02) : 200 - 257
  • [30] RECURSION FORMULAS FOR SEQUENTIAL ESTIMATION
    PETERSEN, DP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1965, 11 (04) : 589 - 590