Unidirectional manipulation of Smith-Purcell radiation by phase-gradient metasurfaces

被引:3
|
作者
Xu, Yadong [1 ,2 ]
Wang, Yang [1 ]
Zhou, Qingjia [1 ]
Gao, Lei [1 ,3 ]
Fu, Yangyang [4 ,5 ,6 ]
机构
[1] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[2] Soochow Univ, Key Lab Modern Opt Technol, Educ Minist China, Suzhou 215006, Peoples R China
[3] Suzhou City Univ, Sch Photoelect Sci & Energy Engn, Suzhou 215104, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Coll Phys, Nanjing 211106, Peoples R China
[5] MIIT, Key Lab Aerosp Informat Mat & Phys NUAA, Nanjing 211106, Peoples R China
[6] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Aerosp Struct, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
PERFECT RETROREFLECTION; GENERATION; LIGHT;
D O I
10.1364/OL.495263
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Here, we present a new, to the best of our knowledge, approach to control Smith-Purcell radiation (SPR) via phase-gradient metasurfaces (PGMs), i.e., periodic grating structures with gradient phase modulation. We show that the phase gradient and the parity design of the PGM can efficiently manipulate higher order diffraction to achieve perfect unidirectional SPR, which significantly alters the SPR in the spectrum and the spatial distribution beyond tra-ditional understanding. Specifically, the even-parity PGM results in incidence-free unidirectional radiation, while the odd-parity PGM enables incidence-locking unidirectional radiation. This unidirectional SPR is very robust, ensured by the parity-dependent diffraction rule in PGMs. A modi-fied formula is presented to reveal the relationship between the radiation wavelength and the radiation angle. Our find-ings offer a new way to control the electromagnetic radiation of moving charged particles (CPs) with structured materi-als, which may lead to novel applications in tunable, efficient light sources and particle detectors.& COPY; 2023 Optica Publishing Group
引用
收藏
页码:4133 / 4136
页数:4
相关论文
共 50 条
  • [41] Generation of Airy beams in Smith-Purcell radiation
    Jing, Liqiao
    Liao, Dashuang
    Tao, Jie
    Chen, Hongsheng
    Wang, Zuojia
    OPTICS LETTERS, 2022, 47 (11) : 2790 - 2793
  • [42] SMITH-PURCELL RADIATION FROM SMALL GRATINGS
    BURDETTE, EL
    HUGHES, G
    PHYSICAL REVIEW A, 1976, 14 (05) : 1766 - 1769
  • [43] Resonant diffraction radiation and Smith-Purcell effect
    Potylitsyn, AP
    PHYSICS LETTERS A, 1998, 238 (2-3) : 112 - 116
  • [44] Smith-Purcell radiation emission in aperiodic arrays
    Saavedra, J. R. M.
    Castells-Graells, D.
    Garcia de Abajo, F. Javier
    PHYSICAL REVIEW B, 2016, 94 (03)
  • [45] Smith-Purcell radiation emission in aligned nanoparticles
    de Abajo, FJG
    PHYSICAL REVIEW E, 2000, 61 (05): : 5743 - 5752
  • [46] Manipulating Cherenkov Radiation and Smith-Purcell Radiation by Artificial Structures
    Su, Zhaoxian
    Xiong, Bo
    Xu, Yihao
    Cai, Ziqiang
    Yin, Jianbo
    Peng, Ruwen
    Liu, Yongmin
    ADVANCED OPTICAL MATERIALS, 2019, 7 (14):
  • [47] Smith-Purcell radiation from concave dotted gratings
    Sergeeva, D. Yu.
    Tishchenko, A. A.
    Aryshev, A. S.
    Strikhanov, M. N.
    JOURNAL OF INSTRUMENTATION, 2018, 13
  • [48] Progress on a Smith-Purcell radiation bunch length diagnostic
    Korbly, SE
    Kesar, AS
    Shapiro, MA
    Temkin, RJ
    PROCEEDINGS OF THE 2003 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-5, 2003, : 2536 - 2538
  • [49] Smith-Purcell radiation in the “pre-wave” zone
    D. V. Karlovets
    A. P. Potylitsyn
    JETP Letters, 2007, 84 : 489 - 493
  • [50] An alternative technique for verification of terahertz Smith-Purcell radiation
    Rattanawan, P.
    Chulapakorn, T.
    Tanapirom, C.
    Phukphan, P.
    Cota, N.
    Prasertsuk, K.
    Chia, J. Y.
    Kusolthossakul, W.
    Jintamethasawat, R.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (47)