Poincare's inequality and Sobolev spaces with monomial weights

被引:0
|
作者
Castro, Hernan [1 ,2 ]
Cornejo, Marco [1 ]
机构
[1] Univ Talca, Inst Matemat, Talca, Chile
[2] Univ Talca, Inst Matemat, Casilla 747, Talca, Chile
关键词
monomial weights; weighted Poincare inequality; weighted Sobolev spaces; EXTENSION-THEOREMS;
D O I
10.1002/mana.202200100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use a weighted version of Poincare's inequality to study density and extension properties of weighted Sobolev spaces over some open set & omega;& SUBE;RN$\Omega \subseteq \mathbb {R}<^>N$. Additionally, we study the specific case of monomial weights w(x1, horizontal ellipsis ,xN)=∏i=1Nxiai,ai & GE;0$w(x_1,\ldots ,x_N)=\prod _{i=1}<^>N\left|x_i \right|<^>{a_i},\ a_i\ge 0$, showing the validity of a weighted Poincare inequality together with some embedding properties of the associated weighed Sobolev spaces.
引用
收藏
页码:4500 / 4522
页数:23
相关论文
共 50 条