Improving Forest Detection Using Machine Learning and Remote Sensing: A Case Study in Southeastern Serbia

被引:8
|
作者
Potic, Ivan [1 ]
Srdic, Zoran [1 ]
Vakanjac, Boris [1 ]
Bakrac, Sasa [1 ,2 ]
Dordevic, Dejan [1 ,2 ]
Bankovic, Radoje [1 ,2 ]
Jovanovic, Jasmina M. [3 ]
机构
[1] Mil Geog Inst Gen Stevan Boskovic, Belgrade 11000, Serbia
[2] Univ Def, Mil Acad, Belgrade 11000, Serbia
[3] Univ Belgrade, Fac Geog, Belgrade 11000, Serbia
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 14期
关键词
vegetation detection; remote sensing; !text type='Python']Python[!/text; machine learning; classification accuracy; Sentinel-2; GOOGLE EARTH ENGINE; GLOBAL VEGETATION; SENTINEL-2; BANDS; INDEX; CLASSIFICATION; COLOR; LEAF; LAI;
D O I
10.3390/app13148289
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Machine learning in geosciences and remote sensing
    David JLary
    Amir HAlavi
    Amir HGandomi
    Annette LWalker
    Geoscience Frontiers, 2016, 7 (01) : 3 - 10
  • [42] Machine learning in geosciences and remote sensing
    Lary, David J.
    Alavi, Amir H.
    Gandomi, Amir H.
    Walker, Annette L.
    GEOSCIENCE FRONTIERS, 2016, 7 (01) : 3 - 10
  • [43] Machine learning in geosciences and remote sensing
    David J.Lary
    Amir H.Alavi
    Amir H.Gandomi
    Annette L.Walker
    Geoscience Frontiers, 2016, (01) : 3 - 10
  • [44] Improving Detection Rate Using Misuse Detection and Machine Learning
    Rajpal, Rohini
    Kaur, Sanmeet
    Kaur, Ramandeep
    PROCEEDINGS OF THE 2016 SAI COMPUTING CONFERENCE (SAI), 2016, : 1131 - 1135
  • [45] Classification of Australian Native Forest Species Using Hyperspectral Remote Sensing and Machine-Learning Classification Algorithms
    Shang, Xiao
    Chisholm, Laurie A.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2481 - 2489
  • [46] Analyzing the Land Cover Change and Degradation in Sundarbans Mangrove Forest Using Machine Learning and Remote Sensing Technique
    Khan, Ashikur Rahman
    Khan, Anika
    Masud, Shehzin
    Rahman, Rashedur M.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE (IWANN 2021), PT II, 2021, 12862 : 429 - 438
  • [47] Assessing above ground biomass of Wunbaik Mangrove Forest in Myanmar using machine learning and remote sensing data
    Win Sithu Maung
    Satoshi Tsuyuki
    Takuya Hiroshima
    San San Htay
    Discover Conservation, 2 (1):
  • [48] Identification of Poverty Areas by Remote Sensing and Machine Learning: A Case Study in Guizhou, Southwest China
    Yin, Jian
    Qiu, Yuanhong
    Zhang, Bin
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (01)
  • [49] Groundwater Potential Mapping Using Remote Sensing and Random Forest Machine Learning Model: A Case Study from Lower Part of Wadi Yalamlam, Western Saudi Arabia
    Madani, Ahmed
    Niyazi, Burhan
    SUSTAINABILITY, 2023, 15 (03)
  • [50] Improving Potato Yield Prediction by Combining Cultivar Information and UAV Remote Sensing Data Using Machine Learning
    Li, Dan
    Miao, Yuxin
    Gupta, Sanjay K.
    Rosen, Carl J.
    Yuan, Fei
    Wang, Chongyang
    Wang, Li
    Huang, Yanbo
    REMOTE SENSING, 2021, 13 (16)